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1 Introduction

In theory�rms try tomaximize expectedpro�ts. Despite the central role of expectedprof-

its, it is not entirely clear how best to measure those expectations. In this paper we study

the e�cacy of two fundamental methods of predicting �rm pro�ts: traditional estima-

tion using Fama and MacBeth (1973) regressions, and estimation using gradient boosting

(Friedman, 2002; Chen and Guestrin, 2016). We �nd that gradient boosting provides bet-

ter forecasts as it permits a much larger set of factors to play a predictive role. The 149

potential factors we use include �rm attributes andmacro factors from Fama and French

(2006); Welch and Goyal (2008); Frank and Goyal (2009); Frank and Yang (2019); Gu et

al. (2020). Having established the statistical e�cacy of the prediction methods, we then

apply the predictions from both methods in three familiar �nance settings to verify the

practical e�cacy of themethods. We study a corporate �nance application (�ows of debt

and equity), an asset pricing application (cross-section of stock returns) and a behavioral

�nance application (predicting prediction mistakes).

This paper contributes four main results to our understanding of expected pro�ts. 1)

Gradient boosting generates higher quality �rm pro�t predictions, and those predictions

align with many observed �rms decisions in a reasonable manner. 2) The distinction be-

tween current pro�t and current expectation of future pro�t, is important for �rm�nanc-

ing decisions. Bothmatter but in distinct ways. Current pro�ts are not a fully satisfactory

proxy for expected pro�ts. 3) Gradient boosting pro�t predictions act similarly but some-

what more strongly than gross pro�ts (Novy-Marx, 2013) when used for the cross-section

of stock returns. So it may o�er an improved proxy in some standard asset pricing appli-

cations. 4) Neither Fama-MacBeth nor gradient boosting generate pro�t predictions that

satisfy rational expectations. We apply an econometric test from Bordalo et al. (2021).

They used the estimated coe�cients as evidence that stock analysts overreact, making

predictions that are too optimistic in booms and too pessimistic in recessions – ‘diagnos-

tic expectations’. We �nd that the pro�t predictions from Fama-MacBeth regressions and

from the gradient boosting algorithm generate the same basic patterns of estimated co-

e�cients as Bordalo et al. (2021) found for human stock analysts. Consider these four
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results in turn.

First, the gradient boosting approach (denoted GBRT), due to Friedman (2002) pro-

duces better �rm pro�t predictions than does the Fama and MacBeth (1973) approach

(denoted FM). This is true both in-sample and out-of-sample. It is primarily due to the

ability to include many more factors without over-�tting the data.

Many key e�ects of predicted pro�ts hold under both approaches to prediction. Com-

paring �rms, we �nd that large �rms and investment grade �rm pro�ts are more pre-

dictable than average �rms. Firms with high R&D, market-to-book, and cash �ow volatil-

ity have less predictable pro�ts than average �rms. Among publicly traded �rms that

exit, unpro�table �rms tend to be liquidated or bankrupt; while pro�table �rms tend to

be involved in an acquisition, a merger, an LBO, or to become a private �rm. During the

�nancial crisis of 2007-2009 and during NBER recessions, �rm pro�ts become less pre-

dictable. The reduced predictability during bad times a�ects average �rms much more

than it a�ects investment grade �rms.

Second, �rm pro�ts are o�en used as a control variable rather than being the main

focus of a paper, seeMitton (forthcoming). In such settings current pro�ts are o�en used

as an easy proxy for expected future pro�ts. Our results show that actual current pro�ts

are not an entirely satisfactory proxy for expected pro�ts. Firm net debt and net equity

decisions are a�ected quite di�erently by the two, as predicted by themodel in Frank and

Sanati (forthcoming).

Third, the gradient boosting based pro�t predictions can be viewed as an alternative

to the familiar pro�t proxies when studying stock returns (Fama and French, 2006; Aha-

roni et al., 2013; Novy-Marx, 2013). The direction of the e�ects are the same and even the

estimated coe�cients are close, but the gradient boosting based proxy seems to have a

somewhat stronger statistical e�ect in the cross-section of stock returns. We do not inter-

pret this use of gradient boosting pro�t predictions as a ‘new factor’ (Harvey et al., 2016).

Instead, we view it as an alternative proxy for an established result – that expected pro�t

is important for stock returns (Fama and French, 2006; Aharoni et al., 2013; Novy-Marx,

2013).

Fourth, the predictions generated by gradient boosting are very good, but not good
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enough to satisfy the restrictions of rational expectations equilibrium when examined

carefully. Predictionmistakes are forecastable using linear regressions using past pro�ts

or past prediction mistakes as factors. This kind of predictable prediction mistakes are

described in the literature as evidence of excessive human optimism during booms and

excessive pessimism during recessions, see Bordalo et al. (2021). Of course, by construc-

tion the algorithms treat all observations equally at the start, and neither algorithm is

human.

1.1 Related literature

Weuse the terms expectedpro�ts andpredictedpro�ts as synonymsbecausenothing that

we do rests on there being an important distinction. The pro�t prediction problem itself

is high dimensional with potentially important nonlinearities. We interpret the gradient

boosting predictions as feasible proxies for the otherwise unobservable expectations. A

similar idea has been developed in more detail by Nagel (2021).

There are several machine learning methods that could be adopted. Gradient boost-

ing, random forest, and deep learning are all high pro�le machine learning algorithms

with distinct strengths and weaknesses, see (Hastie et al., 2009; Efron and Hastie, 2016).

Erel et al. (2021) successfully used severalmachine learning algorithms to study the �rm’s

selection of directors.

In our view gradient boosting provides a good balancing of attributes. Random forest

is the most automatic of the three algorithms. Deep learning requires the most e�ort to

re�ne performance. Our use of gradient boosting also re�ects our past experience that

the algorithm performs well when applied to �rm data. We anticipate that this algorithm

will also prove helpful for other corporate �nance studies. However, it should be noted

that performing well in practice, is not the same thing as optimal in an absolute sense.

Random forest for example is occasionally described as optimal (van Binsbergen et al.,

2020). Efron and Hastie (2016) point out that “Random forests are somewhat more auto-

matic than boosting, but can also su�er a small performance hit as a consequence.”

Deep learning models perform extremely well in some applications. However, they
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also o�en turn out to be underspeci�edwith problematic hold-out performance concerns

more o�en than sometimes recognized. This issue is covered at length by D’Amour et al.

(2020).

Ensemble methods o�en perform better than individual algorithms, see Hastie et al.

(2009). This is well known. So we do not claim that gradient boosting is statistically opti-

mal in an unrestricted sense. In particular, our �nding of linear predictability of predic-

tion errors appears to be a re�ection of this well-known advantage of ensembles.

The behavioral �nance literature is o�en interested in showing the failures of rational

expectations. A particularly interesting version is provided by Bordalo et al. (2021). They

show that stock analyst forecasts contain predictable mistakes that are too optimistic

when things are good and too pessimistic when things are bad. They use that evidence

to motivate a structural model of diagnostic expectations. Instead of testing human pre-

dictions, we apply their test to the pro�t predictions generated by Fama-MacBeth and by

gradient boosting. We �nd that the algorithms generate the same patterns of predictable

prediction mistakes as they found for IBES stock analysts. These algorithms fail rational

expectations in much the same way as humans.

Nagel (2021) suggests that machine learning methods might o�er a reasonable as-if

model of purely human forecasting in high dimensional environments. Our test results

seem broadly supportive of his idea. Various machine learning algorithms have distinct

strengths and weaknesses. So in future research it might be of interest to examine which

machine learning algorithms produce results that are most similar to human �nancial

decisions.

In corporate �nance, �ows of debt and equity to �rms are commonly interpreted

through the lens of the tradeo� theory and the role of pro�ts has been prominent, see

Myers (1984); Fama and French (2002); Danis et al. (2014); Frank and Goyal (2015); Eckbo

and Kisser (2021); Ai et al. (2021). We contribute to that literature by providing evidence

that supports the model in Frank and Sanati (forthcoming). That model is based on a

tradeo� of tax bene�ts of debt against the need for collateral when issuing debt. The dis-

tinction between current pro�ts and expected pro�t plays a central role in their model.

We �nd that as predicted, �rms with high current pro�ts tend to issue debt and repur-

4



chase equity. Firms with high expected pro�ts tend to issue equity and repurchase debt.

Our method of estimating expected pro�ts may also contribute a useful alternative

proxy to the literature on stock returns (Aharoni et al., 2013; Novy-Marx, 2013; Fama and

French, 2015). It is commonly thought that pro�ts plays an important role for stock return.

Fama and French (2006) used income before extraordinary items. Novy-Marx (2013) used

gross pro�ts. We use the same testing methods as those studies. Going beyond those

studies, we �nd that gradient boosting estimated expected pro�ts provides results that

are similar but empirically somewhat stronger. Accordingly our approach can provide

an alternative proxy for the role of expected pro�ts. The ability of gradient boosting to

impound a larger number of factors in the expectation seems helpful. Our contribution

here is an alternative proxy for known results, not a new factor; nor do we enter into the

debates over the speci�c set of best factors (Harvey et al., 2016; Hou et al., 2019).

2 Data

The initial �rm data is from CRSP/Compustat Merged annual data extracted fromWRDS,

covering the years 1950-2019. Data is dropped if it is prior to 1964, for �rms not based

in the USA, �rms in the Finance, Insurance and Real Estate industries (SIC codes from

6000 to 6999), missing key data items, or has negative book equity. The factor data is

winsorized on an annual basis at the the 0.5% and 99.5% levels. The data extraction and

cleaning steps are described in detail by Table 1 showing the impacts on the number of

observations. The result is 121,401 �rm/year observations.

The accounting explanatory variables for date t are for �scal year that ends in calendar

year t. Consistent with Aharoni et al. (2013) calculations are on a per �rm basis, rather

than the per stock basis used by Fama and French (2006). This is intended to address

concerns about the impact of changes to the number of shares from year to year.

The variable to be predicted is pro�ts. But the concept of pro�ts does not exactly

match the standard accounting data. As a result a variety of alternative measures have

been used in di�erent papers, see Mitton (forthcoming). Our tabulated results are for
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Table 1: Data cleaning

1 start CRSP/COMPUSTAT Merged Foundamental Annual data �le 326,248
(1950 - 2019, Consolidation Level “C")

2 keep if datafmt = “STD" 0
3 keep if indfmt = “INDL" 0
4 keep if �c = “USA" - 27,541
5 drop if sic>= 6000 & sic<= 6999 - 84,666
6 drop missing Fama French items, pro�tability, and total assets at t -12,225
7 drop negative book equity - 8,065
8 drop gvkey fyear duplicates -2,205 (191546)
9 drop missing total assets at t− 1 -19,911
10 drop if total assets less than $5 million or book equity less than $ 2.5 million - 9,900
11 keep if year(t) <= 2014 and year(t) >= 1964 - 12,496
11 winsorize variables are winsorized when outside the 0.5 and 99.5 percentage each year
12 training sample year(t) <= 2014 and year(t) >= 1964 146,239

including pro�t information at t+1 (year 2015)
13 testing sample year(t) <= 2014 and year(t) >= 1975 132,612

including pro�t information at t+1 (year 2015)
14 analysis sample 11,210 observations have missing total assets at t+1 121,401
15 analysis sample 1,447 �rms have only one observation 119,955

operating pro�t. It is de�ned as

πi,t = (Salesi,t − COGSi,t − SGAi,t)/ATi,t. (1)

We refer to πi,t interchangeably as ‘pro�t’ or ‘pro�tability’.

The tests were also carried out using gross pro�t (Novy-Marx, 2013), and using income

(Fama and French, 2006) as the dependent variable. In untabulated results, we also tried

a number of further pro�t proxies. The inferences from our tests are very similar across

pro�tmeasures. In earlier dra�swe also tabulated the results fromgross pro�ts and from

income. But for ease of reading these are no longer tabulated.

Theory does not specify the factors to be used when predicting pro�ts. Presumably,

anything that helps to predict the future pro�ts should be included. As a practical mat-

ter, when using linear regressions or Fama-MacBeth, multicollinearity sharply limits the

number of factors that can be included. Amajor potential advantage of using the gradient

boosting is the ability to include a large number of candidate factors.

We studied two sets of explanatory factors, X. The �rst version of Xt is the list of

factors used by Fama and French (2006), denoted “FF06”. This provides an important

foundation. The second version ofXt is a set of 149 factors from Fama and French (2006),
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Welch and Goyal (2008), Aharoni et al. (2013), Frank and Yang (2019), and Gu et al. (2020),

denoted “All”. All includes awide range of �rm level accountingmeasures aswell asmany

macroeconomic factors. These are listed in the Appendix Table A1. No attempt wasmade

to delete factors that are similar to each other. That task is le� to the algorithms.

Time a�ects the analysis in several ways. First, variables are updated at di�erent fre-

quencies. Most of our analysis is at annual frequency and we use themost recent quarter

or month as the factor. Second, predictions are made for 1976 to 2015 using information

from 1964 to 2014. To make sure that there is enough information to correctly estimate

the coe�cients, we start to predict pro�ts in year 1975 using information from year 1964

to 1974.

For in-sample estimation all data is used together. For out-of-sample estimation only

data from prior dates is included in the rolling estimation. When calculating expected

pro�t π̂i,τ+1, only information until year τ are used. We do not use cross-sectional coe�-

cients estimated using information at τ + 1 or further in the future in order to avoid the

look-ahead bias. We call the rolling sample estimates ‘out-of-sample’ for simplicity. Some

authors prefer the term pseudo-out-of-sample, since it uses data that is actually already

in the past when a study is conducted.

3 Methods to make predictions

This section explains the classic Fama-MacBeth method and the modern gradient boost-

ing method that are used to produce the pro�t predictions. For Fama-MacBeth see Fama

andMacBeth (1973), Petersen (2009) andCampbell (2017). For gradient boosting seeHastie

et al. (2009), Chen and Guestrin (2016) and Efron and Hastie (2016). The reported Fama-

MacBeth estimation resultswere implementedusing Stata 14. The reported gradient boost-

ing estimation results were implemented using scikit-learn library (version 0.24.2), see

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.

html. Earlier dra�s of this paper implemented gradient boosting using XGBoost which

was also used by Erel et al. (2021). Both so�ware libraries generate extremely similar

results.
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3.1 Fama-MacBeth

Following Fama and French (2006) and Aharoni et al. (2013) we estimate a series of re-

gressions to predict future pro�t.

πt+1 = λ0 + λ1Xt + εit (2)

where πt+1 is pro�t during the �scal year that ends in calendar year t+ 1. Xt is the list of

market and accounting factors. Versions using FF06 and using All are estimated.

Parameters are estimated on a rolling basis. The coe�cients λ̂t0, λ̂t1 used to calculate

predicted π̂t+1 = λ̂t0 + λ̂t1Xt, are the average slope coe�cients from year-by-year cross-

section pro�t regressions up until year t. When calculating expected pro�t π̂t+1, only

information prior to year t are used. The data is from 1964 to 2015. The predictions are

estimated for years 1975 to 2015, so each estimate hasmore than a decade of data. As time

passes the training sample contains a gradually growing number of observations. For

greater detail, see the algorithm 1 in the Appendix.

Algorithm 1 Fama and MacBeth (1973) Predictions
procedure FM(Xi,t, πi,t+1).Where t - time year, i - �rm,Xi,t - predictors at time t, πi,t+1

- pro�tability to predict
for 1975 ≤ T ≤ 2014 do

for 1964 ≤ t ≤ T − 1 do
run cross-sectional regression for all �rms at time t
πi,t+1 = λ0,t + λ1,tXi,tεi,t
get estimated coe�cients {λ̂0,t, λ̂0,t}

end for
Compute average coe�cients:
λ̂0,T =

∑T−1
t=1964 λ̂0,t/(T − 1964)

λ̂1,T =
∑T−1

t=1964 λ̂1,t/(T − 1964)
Use information at time T Xi,t to make prediction of pro�tability at T + 1

π̂i,T+1 = λ̂0,T + λ̂1,TXi,T

end for
end procedure
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3.2 Gradient boosted regression trees

Gradient boosting regression trees are a particularly prominent and empirically success-

ful prediction method used in many applications. It starts with regression trees and then

re�nes them iteratively by focusing on the errors in the previous iteration. This idea of

re�nement by focusing on error correction is known as boosting. Gradually an entire for-

est of trees is constructed. Then an average across the set of trees is used as the model’s

prediction.

Start with a regression tree. It is the basic building block for themethod. A regression

tree uses numerical cuto�s to assign an observation to a branch. In the simplest case

there is a threshold number x. If the observation has x > x the data is assigned to the

upper branch. If the observation has x ≤ x the data is assigned to the lower branch. Then

within each branch there are subsequent partitions constructed. Eventually an entire set

of branches are constructed. The �nal set is called a leaf, and it de�nes the set that the

particular observation belongs to. A range of rules can be used to de�ne the number of

branches, their order of consideration and so on.

Figure 1: Tree Example

πt < 0.5

ln Bt/Mt < 1

πt+1 = 0.1 πt+1 = 0.5

πt+1 = 0.8

True

True False

False

Figure 1 shows an example of a simple tree. It predicts expected pro�t using current

pro�t, and book to market. If current pro�t is greater or equal to 0.5, the decision tree

predicts the future pro�tability to be 0.8. If current pro�t is less than 0.5 and log value

of book to market is less than 1, predicted future pro�t is 0.1. Otherwise, the predicted

9



pro�t is 0.5. The tree in Figure 1 can also be represented as,

ŷ = h(x) =
3∑

m=1

cmI{(x1, x2) ∈ Rm} (3)

whereRm is the partition of the input variables, and cm is the predicted value assigned to

the terminal leaf.

In the example it takes at most two “branches” to reach the �nal terminal leaves. This

is called the number of layers of the decision tree. Themore layers the tree has, themore

complex the model is. When a regression tree model is deep (more layers), the model

tends tohave lowbias but larger variance. Whilewhen themodel is shallow (fewer layers),

the model becomes too simple, with low variance but large bias.

Regression trees are easy to interpret, but commonly do not predict well. Ensem-

bles of trees have been found to predict better. Random forest Hastie et al. (2009) con-

structs many trees using independent bootstrap samples from the data to generate a for-

est. Boosting creates trees to improve on past prediction mistake instead of bootstrap

samples from theoriginal data. Boosting ismore complex thanbootstrapping, but it tends

to improve �nal performance, see Efron and Hastie (2016).

Gradient boosting is the most widely adopted version of boosted forests. It starts by

estimating decision trees with �xed shallow depth. Then it computes the residuals for

the trees. At the next iteration more weight is devoted to the cases in which the model �t

poorly. In the end an ensemble of trees are used to ‘vote’ on the appropriate results. This

generally reduces the bias in a simple tree model while maintaining the low variance.

Themain drawback relative to a simple tree as in Figure 1, is that forests do not have such

simple depictions that show how each variable a�ects the �nal result.

A more formal representation is,

ŷ = FM(x) =
M∑
m=1

hm(x) (4)

where hm is decision tree regressor with depth of d, andM is the number of trees in the
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forest. FM(x) is solved by using a greedy algorithm framework,

Fk(x) = Fk−1(x) + γhk (5)

where γ is the learning rate. The learning rate shrinks the contribution of each additional

tree. hk is the newly added tree solved by minimize a loss function L given Fk−1(x)

hk = arg min
h

∑
i

(L(yi, Fk−1(xi) + γh(xi)) (6)

There are three important hyperparameters in gradient boosting: the depth of the

tree d (max_depth), the number of trees in the forestM (n_estimators), and learning rate

γ (learning_rate). The default parameters have the following values: depth of the tree is

3, number of trees in the forest is 100, and learning rate is 0.1. We have systematically

carried out the analysis with the default hyperparameters as well as with hyperparame-

ters optimized using cross-validation. The results are very similar. Except where noted,

the Tables use the default hyperparameters.

As in the Fama-MacBeth estimation, to predict pro�t at time τ + 1, π̂τ+1, we train the

model using informationbefore τ+1, {Xt−1, πt}t≤τ . We thenapply themodel using factors

available at time τ ,Xτ .

Gradient boosting estimation was done using the so�ware GradientBoostingRegres-

sor fromhttps://scikit-learn.org/stable/modules/ensemble.html, and using XGBoost from

Chen and Guestrin (2016). The results are very similar. The reported results in the Tables

use the algorithmGradientBoostingRegressor fromscikit-learn.org. For greater detail see

the algorithm 2.

4 Methods to evaluate predictions

There are many ways to evaluate predictions that have distinct justi�cations. We report

the results using in-sample R2, out of sample R2, Diebold and Mariano (2002) t-tests, and

estimation with cross-validation.
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Algorithm 2 GBRT Predictions
procedure GBRT(Xi,t, πi,t+1) .Where t - time year, i - �rm,Xi,t - predictors at time t,
πi,t+1 - pro�tability at t+ 1 to predict

for 1975 ≤ T ≤ 2014 do
Training sample are observations for all �rms and 1964 ≤ t ≤ T − 1
Fit the following GBRT model using training sample data
πi,t+1 = f(Xi,t)

Get estimated model f̂T
Use information at time T Xi,T and �ttedmodel f̂T to predict pro�tability at T+1

π̂i,T+1 = f̂T (Xi,T )
end for

end procedure

4.1 In-sampleR2

An in-sample R2 is perhaps the best known method to assess the ability of a model to

account for the variation in the data. If a model is correctly speci�ed, then maximum

likelihood estimated parameters will be optimal. As argued by Inoue and Kilian (2005) it

is then appropriate to evaluate those parameters within the sample.

Commonly we have less than full con�dence that the structure of the model being

estimated is the actual true data generating process. Any model may be reasonable, but

it is almost certainly misspeci�ed relative the true data generating process. Accordingly,

as is standard in themachine learning literature (Efron and Hastie, 2016), we place much

greater weight on the out-of-sample performance as discussed in the next section.

Even if we are not con�dent that the model is correctly speci�ed, an in-sample R2 is

widely reported as a familiar diagnostic tool. In-sample explanatory power is given by

R2 = 1−
∑

(π̂i,t+1 − πi,t+1)2∑
(πi,t+1 − π̄i,t+1)2

. (7)

where π̄i,t+1 is the sample average pro�tability. Because this is in-sample, it is bounded

below by 0. The calculation steps are given in greater detail as Algorithm 3.
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Algorithm 3 In-Sample R2

procedure IS(Xi,t, πi,t+1).Where t - time year, i - �rm,Xi,t - predictors at time t, πi,t+1 -
pro�tability at t+ 1 to predict

Use observations such that 1975 ≤ t ≤ 2014 as the whole sample, (1976 ≤ t + 1 ≤
2015)

if evaluate FM then
for all �rm-year observations in the whole sample do

for all time period t, run cross-sectional regression for all �rms at time t
πi,t+1 = λ0,t + λ1,tXi,t + εi,t
get estimated coe�cients for each time period t {λ̂0,t, λ̂1,t}
compute the average coe�cients {λ̂0, λ̂1}

end for
for all �rm-year observations in the whole sample do

make prediction of pro�tability in the whole sample
π̂i,t+1 = λ̂0 + λ̂1Xi,t

calculate the in-sample R2 in the whole sam
R2
IS = 1 −

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−π̄i,t+1)2

where π̄i,t+1 is the average of pro�tability πi,t+1 for
the whole sample

end for
end if
if evaluate GBRT then

for all �rm-year observations in the whole sample do
Fit the following GBRT model using the whole sample
πi,t+1 = f(Xi,t)

Get estimated model f̂
end for
for all �rm-year observations in the whole sample do

Use �tted model f̂ to predict pro�tability in the whole sample
π̂i,t+1 = f̂(Xi,t)
calculate the in-sample R2 in the whole sam
R2
IS = 1 −

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−π̄i,t+1)2

where π̄i,t+1 is the average of pro�tability πi,t+1 for
the whole sample

end for
end if

end procedure
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4.2 Out-of-sampleR2

Out-of-sample explanatory power is given by

R2 = 1−
∑

(π̂i,t+1 − πi,t+1)2∑
(πi,t+1 − πi,t)2

. (8)

If π̂i,t+1 is very far from πi,t+1 then the numerator may be much larger than the denomi-

nator and so the term being subtracted may be larger than one. So the out-of-sample R2

is not bounded below by zero. When that happens the model is clearly not doing a good

job of explaining the data.

4.3 Diebold andMariano (2002)

A popular and useful method of evaluating model performance is the Diebold and Mari-

ano (2002) t-test, see also Diebold (2015). Following Gu et al. (2020), the test statistics DM

is calculated as

DM = d̄1,2
t /σ̂(d̄1,2

t ),where (9)

d1,2
t+1 =

1

n

n∑
i=1

((e2
i,t+1)2 − (e1

i,t+1)2),

e1
i,t+1, e

2
i,t+1 is the prediction error for �rm i pro�tability at time t+ 1 using each method,

and d̄1,2
t and σ̂(d̄1,2

t ) are the mean and Newey-West standard error of the time series d1,2
t ,

respectively.

4.4 Cross-validation

Cross-validation is a standard machine learning method intended to reduce over�tting,

see (Hastie et al., 2009; Efron and Hastie, 2016; Bates et al., 2021). With a panel of data

there is again an issue of how to deal with the time dimension. We also want to ensure

data comparability to the out-of-sample R2 calculation.

Accordingly, �rm-year observations from 1975 to 2014 are used as the data. The data

is randomly partitioned into 10-folds using subsamples that are strati�ed by year. This
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ensures proper balance of years in each fold. No other factors were used for further strat-

i�cation.

The model is estimated 10 times and then an average is reported. In the �rst round,

the �rst fold is held out for validation and the remaining 9 folds are used for parameter

estimation. In the second round, the second fold is held out for validation and the re-

maining 9 folds are used for parameter estimation. The process continues in this way

until 10 estimates have been computed.

The reported out-of-sample R2 for cross-validation is the average out-of-sample R2

across all 10 estimations. The calculation steps are given in detail as Algorithm 4.

5 Evidence of predictability on average

This section provides overall evidence on the predictability of �rm pro�ts. Table 2 pro-

vides evidence on the e�cacy of Fama-MacBeth and gradient boosting methods. Results

are provided using the same factors used by Fama and French (2006) as well as the larger

set of 149 factors as described in Section 2.

In column (1) of Table 2 prediction results for Fama and MacBeth (1973) regressions

usingFamaandFrench (2006) variables are reported. Themodel does extremelywellwith

an in-sampleR2 of 0.65. In cross-validation and out-of-sample, the model does much less

well than in-sample. This is consistent with the idea that over-�tting is taking place.

The cross-validation R2 is much lower than the in-sample R2, but it remains larger

than the out-of-sample R2. This strongly suggests that there remains a degree of over�t-

ting. There are two likely reasons. In constructing the folds, we have only strati�ed on

time. But the population of �rms may have changed in other respects over time in ways

that are not taken into account by the strati�cation. There is also the issue of possibly im-

portant macro factors that a�ect more recent time periods but not earlier time periods.

Column (2) again uses Fama-MacBeth regressions but extends the set of variables to

include all 149 candidate factors. As might be expected, the model estimation collapses.

There is substantial multicollinearity, and together with the over�tting found in column

(1) it is easy to understand the inability of the model to handle the extra factors.
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Algorithm 4 K-Fold Strati�ed Cross Validation
procedure CV(k,Xi,t, πi,t+1) .Where t - time year, i - �rm,Xi,t - predictors at time t,
πi,t+1 - pro�tability at t+ 1 to predict, K-fold, strati�ed by time t

K = 10
Use observations such that 1975 ≤ t ≤ 2014 as the full sample, (1976 ≤ t+ 1 ≤ 2015)
The sample is randomly split into K groups, {Sj}Kj , strati�ed by year, meaning that

each subsets contains roughly the same proportions of observation in each year. The K-
Fold Strati�ed splitting is implemented using sklearn.model_selection.strati�edkfold
(scikit-learn 0.24.2).

for 1 ≤ k ≤ K do

the training set Tk is
K⋃

j=1,j 6=k
Sj

the validation set Vk is Sj=k
if evaluate FM then

for all �rm-year observations in the training set Tk do
for all time period t, run cross-sectional regression for all �rms at time t
πi,t+1 = λ0,t + λ1,tXi,t + εi,t
get estimated coe�cients for each time period t {λ̂0,t,k, λ̂1,t,k}
compute the average coe�cients {λ̂0,k, λ̂1,k}

end for
for all �rm-year observations in the validation set Vk do

make prediction of pro�tability in the validation set Vk
π̂i,t+1 = λ̂0,k + λ̂1,kXi,t

calculate the out-of-sample R2 at the validation set Vk
R2
OOS,k = 1−

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2 where i, t ∈ Vk

end for
end if
if evaluate GBRT then

for all �rm-year observations in the training set Tk do
Fit the following GBRT model using training set Tk
πi,t+1 = f(Xi,t)

Get estimated model f̂k
end for
for all �rm-year observations in the validation set Vk do

Use �tted model f̂k to predict pro�tability in the validation set Vk
π̂i,t+1 = f̂k(Xi,T )
calculate the out-of-sample R2 at the validation set Vk
R2
OOS,k = 1−

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2 where i, t ∈ Vk

end for
end if
Compute the average out-of-sample R2 for the model being evaluated
R2
K-Fold = 1

K

∑K
k=1R

2
OOS,k

end for
end procedure
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Table 2: Predicting pro�ts overall

Pro�ts are predicted for 1976 to 2015. Rolling estimation uses strictly prior data from 1964 to 2014 to make
(pseudo) out-of-sample predictions. Cross validation and in-sample estimation uses data from 1975 to 2014
to make the predictions. The variable being predicted is operating pro�t(t+1)

total assets(t+1) . The amount of variation ex-

plained is denoted R2. In-sample R2 is calculated as 1−
∑

(π̂i,t+1−πi,t+1)2∑
(πi,t+1−π̄i,t+1)2 . For the cross validation we form

10 equally large groups strati�ed by year. 9 groups are used to estimate and then predict for the le� out
group. This is done 10 times. Then an average R2 is computed for all 10 groups. Out-sample R2 means that
data from 1964 to 2014 is used to estimate the model on a rolling basis. The predictions are for 1976 to 2015.
The models are �t using information from 1964 until time t to predict pro�ts at time t+1. The out-of-sample
R2 is calculated as 1−

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2

. Estimation using the Fama and MacBeth (1973) method is denoted
FM. Estimation using the Friedman (2002) method is denoted GBRT. When the data used as explanatory
variables follows Fama and French (2006) it is denoted FF06. When the data used as explanatory variables
are all factors used in Fama and French (2006), Frank and Goyal (2009), Frank and Yang (2019), and Gu et
al. (2020) it is denoted All. Data construction details are provided in the appendix. Every cell in this table
has 121,401 observations.

(1) (2) (3) (4)

Estimation Method FM FM GBRT GBRT
Data FF06 All FF06 All
In-Sample R2 0.65 -18.67 0.68 0.72
10 fold CV R2 0.06 -67.86 0.11 0.18
Out-of-Sample R2 0.03 -2840.30 0.10 0.15

Column (3) uses gradient boosting with the FF06 factors. The model does predict

better than column (1). There is again evidence of an important distinction between in-

sample and out-of-sample performance. The cross-validation approach is again not su�-

cient to get fully remove the over�tting in-sample issue, but it is much closer than it was

in column (1).

Column (4) uses gradient boosting but now with all of the 149 factors. Gradient boost-

ing shows a major advantage over Fama-MacBeth. Instead of the model performance

being destroyed as in column (2), there is now a signi�cant improvement. This is true

in-sample, using cross-validation, and also out-of-sample. Gradient boosting permits the

use of extra factors beyond what can be e�ectively used in linear regressions.

The machine learning literature is very positive on the use of cross-validation to mit-

igate over-�tting. However, Table 2 still exhibits some over-�tting or perhaps omitted

recent macro factors. There may also be an issue of data reuse, see Bates et al. (2021).
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Figure 2: Actual and expected pro�ts

This �gure plots the relationship between current pro�t (t) and date t prediction for date
t+1 pro�t, and the relationship between actual next periodpro�t (t+1) anddate t prediction
for date t+1 pro�t. Date t predictions for date t+1 pro�t are predicted using Fama-Macbeth
method with Fama and French (2006) variables (FM, FF06) and GBRT with all variables
(GBRT, All). Date t forecast error is de�ned as realized pro�t at date t+1 minus date t pre-
dictions for date t+1 pro�t. We include only observations for t = 2014.

(a) Predictions (b) Forecast Errors
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Further insight into the predictions and the forecast errors comes from Figure 2. In

the top row on the le� hand side of the page pro�t at date t is on the horizontal axis and

date t + 1 is on the vertical axis. The pro�t data from one year to the next is very close

to the 45◦ line. In the top row on the right hand side the change in pro�t from date t

to t + 1 is given as the vertical axis while the actual data t pro�t is still the horizontal

axis. The forecast errors appear to be clustered around zero. There is more dispersion

for extremely negative values of date t operating pro�t.

The second row in Figure 2 uses the Fama-MacBeth method and FF06 factors to con-

struct the forecasts. The forecasts and the forecast errors are plotted. The estimation

method dramatically shrinks the variance of the predictions. As can be seen on the le�-

hand-side of the second row, the method produces forecasts that depart noticeably from

the 45◦ line. This e�ect is particularly marked for �rms with negative operating pro�ts.

The third row of Figure 2 shows the corresponding plots using gradient boosting and

All factors. Unlike Fama-MacBeth the estimates generally seem to lie along the 45◦ line,

and there is more variation than in Fama-MacBeth estimates. Both models seem to have

more di�culty making good predictions for �rms with negative pro�ts than they do for

�rms with positive current pro�ts.

5.1 Are the predictionmodels signi�cantly di�erent?

In Table 2 sharply di�erent R2 values are obtained for alternative models. Are the di�er-

ences large enough to be statistically signi�cant at conventional levels of con�dence? Ta-

ble 3 provides statistical tests of themodels fromTable 2 against each other using Diebold

and Mariano (2002) t-statistics. In each case a positive number indicates that the column

model outperforms the row model. We consider 4 approaches to forecasting: 1) using

the own date t value as prediction for date t+ 1 (“Own lag”), 2) Fama-MacBeth with FF06

factors, 3) gradient boosting with FF06 factors, 4) gradient boosting with All factors.

Table 3 results provide strong support for the advantage of gradient boosting. Own lag

is rejected in favor of all other models. gradient boosting with All factors is signi�cantly

better than any of the othermodels considered. This evidence reinforceswhat is reported
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Table 3: Testing prediction models against each other out-of-sample

This table uses Diebold and Mariano (2002) t-statistics to compare rolling out-of-sample pro�t predictions
from alternative models using data from 1964 to 2014 to predict pro�ts for 1976 to 2015. In the estimation,
the variable being predicted is operating pro�t(t+1)

total assets(t+1) . There are two versions of the explanatory variables. FF06
means that the explanatory variables are from Fama and French (2006). All means that the explanatory
variable are from Fama and French (2006), Frank and Goyal (2009), Frank and Yang (2019), and Gu et al.
(2020) together. Own lag means that instead of estimation, the period t value of pro�t is used as a pre-
diction of pro�ts for t+1. Data construction details are provided in the appendix. FM means that the pre-
diction model is estimated following Fama and MacBeth (1973). GBRT means that the prediction model
is estimated following Friedman (2002). The model performance is evaluated using Diebold and Mariano
(2002) test. Following Gu et al. (2020), the test statistics DM is calculated as DM = d̄1,2

t /σ̂(d̄1,2
t ), where

d1,2
t+1 = 1

n

∑n
i=1((e2

i,t+1)2 − (e1
i,t+1)2), e1

i,t+1, e
2
i,t+1 is the prediction error for �rm i pro�tability at time t+ 1

using each method, and d̄1,2
t and σ̂(d̄1,2

t ) are the mean and Newey-West standard error of the time series
d1,2
t , respectively. The average di�erences d̄1,2

t comparing column model with the row model are shown
in the table. The test statistics DM are shown in the brackets. The test statistics are shown in the brack-
ets. A positive number indicates that the column model outperforms the row model. Each cell is reports
a cross-section average t-statistic for the predictions, so each cell has 40 observations. *, **, and *** denote
statistical signi�cance at the 10%, 5%, and 1% level, respectively.

FM, FF06 GBRT, FF06 GBRT, All

Own Lag 3.60** 11.75*** 17.75***
(2.43) (4.53) (4.94)

FM, FF06 8.15*** 14.15***
(3.10) (3.67)

GBRT, FF06 6.00***
(4.19)

in Table 2.

5.2 Pro�t prediction horizon

The tabulated results report results for one-year aheadpro�t predictions. Doespredictabil-

ity degrade rapidly as predictions are made about dates further in the future?

Figure 3 shows the results for date t predictions of pro�ts for years t+ 1 to t+ 6 years.

As expected, there is a sharp drop in predictability from year t+ 1 to t+ 2. Years t+ 3 to

t+5 are essentially equally predictable. In year t+6 there is even a slight improvement in

predictability. These horizon e�ects are similar across prediction methods and factors.

Consistent with Table 2 the gradient boosting method using all factors is consistently
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Figure 3: Pro�t prediction horizon

This �gure plots pro�t predictability at di�erent prediction horizon. Future pro�ts πt+j
with prediction horizon j is predicted using information at time t, Xt. The predictive
models include: (1) Fama-Macbeth method with Fama and French (2006) variables (FM,
FF06), (2) GBRT with Fama and French (2006) variables (GBRT, FF06), (3) GBRT with all
variables (GBRT,All). Thenegativemean squared error (MSR) is calculated as 1

N

∑
i,t

(π̂i,t+j−

πi,t+j)
2.

the best at predicting future pro�ts at all horizons. The fact that longer horizon predic-

tions beyond year 5 are not always worse than slightly shorter horizon predictions, is

reminiscent of Fama and French (1988).

5.3 Hyperparameter tuning

The learning process of many machine learning models are controlled by parameters

called hyperparameters. Unlike the ordinary parameters whose values are estimated di-

rectly by training themodel on the data, hyperparameters are used to control the learning

process. In the gradient boostingmodel, the learning rate γ (“learning_rate”) determines

the speed of convergence, the depth of the tree d (“max_depth”) and the number of trees

in the forestM (“n_estimators”) control model complexity.

There is limited theoretical guidance on the choice of hyperparameters. The default

21



values of the hyperparameters in standard libraries re�ect satisfactory performance in

many past applications. Our main estimation results use default values for the hyperpa-

rameters. In this section we ask, can the predictions be improved by re�ning the choices

of the hyperparameters?

To �nd optimal hyperparameters we search over a hyperparameter space and then

evaluate model performance. There are two common methods. It can be done using a

hold-out validation sample or by using cross-validation. We try both, with quite similar

results.

First, for hold-out validation the original data is divided into training, validation and

testing samples. Models are estimated using alternative setting of the hyperparameters

using the trainingdata. In each case theperformanceof thehyperparameters is evaluated

on the validation data. The best set of hyperparameters is selected. The �nal evaluation

of the model is carried out using the testing data. To evaluate model performance we

using out-of-sample R2 computed on the testing data: R2
OOS = 1−

∑
it(πi,t+1−π̂i,t+1)2∑
it(πi,t+1−πi,t)2 .

Due to the panel structure of the data there is an issue of howbest to re�ect the passage

of time. Following Gu et al. (2020) a recursive approach is used. For each year T , the

training sample is {Xt, πt+1 : t ≤ T −2}, the validation sample is {Xt, πt+1 : t = T −1}, the

testing sample to predict πT+1 is {Xt : t = T}. The recursive sample splitting approach

maintains the temporal ordering of the data.

Second, we also tune the hyperparameters using standardK-fold cross-validation. The

sample is split into K smaller subsamples randomly. Due to the panel structure of the

data, we stratify the samples by year so that the data does not accidentally overweight or

underweight particular time periods. We do not stratify on factors other than time.

For each set of hyperparameters, we train themodel usingK− 1 of the folds and then

make prediction and compute the out-of-sampleR2 on the remaining fold of the training

data. Each fold is used once as the held-out validation subsample and K out-of-sample

R2s are computed. The average over the K out-of-sampleR2 is the �nal performancemea-

sure. The set of hyperparameters thatmaximize the �nal performancemeasure is chosen

as the optimal hyperparameters, and the �nalmodel is trained on thewhole training sub-

sample (all K-folds) using the best sum of squares residuals hyperparameters.
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K-fold cross-validation method is computationally intensive. We tune the hyperpa-

rameters once at the beginning of the sample. We use information before 1975 {Xt, πt+1 :

t ≤ 1974} as cross-validation sample, andmaintain the tuned hyperparameters. van Bins-

bergen et al. (2020) also tune the hyperparameters once at the beginning of the sample,

and maintain the tuned hyperparameter through out the paper.

The hyperparameters chosen by the K-fold cross-validation method is the following:

learning rate is 0.1, max depth is 3, and number of boosting stages is 150. Apart from the

number of boosting stages this is very much like the default hyperparameter values. Li

and Rossi (2020) shows that di�erent choices for the number of boosting stages does not

signi�cantly a�ect prediction performance.

Table 4 also shows that hyperparameter tuning does not a�ect out-of-sample R2. The

results suggest that di�erent tuningmethod only generate slightly di�erent out-of-sample

performance. Given that we are interested in comparing the di�erence between Fama-

MacBeth method and gradient boosting model, we opted to use the default parameters

through the paper apart from Table 4. The prediction results are very similar when using

alternative hyperparameters.

5.4 Which factors are most important?

The results above show that gradient boosting with All variables predicts pro�ts better

than does Fama-MacBeth. But the analysis included 149 factors. Which factors matter

most? How do those compare to the factors used by Fama and French (2006)?

In the Fama-MacBeth model, the average slope coe�cient and its variation, re�ects

the importance of each factor. But gradient boosting is a non-parametric model without

a speci�c coe�cient that plays a similar role to the average slope coe�cient.

To evaluate the impact of individual factors we use feature importance, and a permu-

tation test of feature importance. These twomethods have distinct statistical foundations.

First consider feature importance. Following Hastie et al. (2009) we use an impurity-

based measure also known as the Gini importance. It is computed as the total criterion

reduction (Gini Gain) brought by each feature. The Gini index is similar to an empirical
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Table 4: Does hyperparameter tuning make much di�erence?

This table provides out-of-sample performance for di�erent hyperparameter tuningmethods. The variable
being predicted is operating pro�t(t+1)

total assets(t+1) . Estimation using the Friedman (2002) method is denoted GBRT. The
amount of variation explained is denoted R2. When the data used as explanatory variables are all factors
used in Fama and French (2006), Frank and Goyal (2009), Frank and Yang (2019), and Gu et al. (2020) it is
denoted All. Hyperparameters are set in three ways: (1) defaults: learning rate is 0.1, max depth is 3, and
number of boosting stages is 100, (2) recursive evaluation: use {Xt, πt+1 : t <= T − 2} as the training
sample, {Xt, πt+1 : t = T − 1} as the validation sample, and {Xt : t = T} as the testing sample to predict
πT+1, (3) 10-fold strati�ed cross validation strati�ed by year: sample before 1975 {Xt, πt+1 t <= 1974} is
used as cross-validation sample, and maintain the tuned hyperparameters for the rest. For the methods
in (2) and (3), the hyperparameters are tuned over the following ranges: learning over [0.01, 0.1, 0.2], max
depth over [1,2,3,4], and n estimators over [50, 100, 150]. For the column (3) 10-Fold cross validation, the
hyperparameters chosen by the K-fold cross-validation method is: learning rate is 0.1, max depth is 3, and
number of boosting stages is 150. Out-of-sample R2 values calculated as 1 −

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2

. For out-of-
sample R2 calculations, every cell has 121,401 observations. *, **, and *** denote statistical signi�cance at
the 10%, 5%, and 1% level, respectively.

(1) (2) (3)

Estimation Method GBRT GBRT GBRT
Data All All All
Tuning Default Recursive Cross Validation
Out-of-Sample R2 0.15 0.13 0.15

variance under the node. Gini Gain is the variance reduction a�er introduce xm as split-

ting variable. The feature importance of regression tree for feature V is the sum of Gini

Gain of the variable across all nodes within the tree. We take the weighted-average over

ensemble of trees. Thenwe apply the feature importance at the ensemble or ‘forest’ level.

Feature importance is calculated for each variable in the gradient boostingmodel. Figure

4 shows the ratio of each factor’s feature importance overall the sum of total feature im-

portance. The values for the top 10 features are shown. If a feature is included as a factor

by Fama and French (2006) it is shown using a red bar. If not, it is shown using a blue bar.

By far the most important single factor for predicting period t + 1 pro�t is period

t pro�t. It constitutes 84% of the total feature importance from all factors. This is the

one top factor that was also used by Fama and French (2006). Despite the importance of

period t pro�ts, recall the result in Table 3. The period t pro�t is not a su�cient statistic

for predicting period t + 1 pro�t. That model is rejected relative to all the other models

considered.
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Figure 4: Measuring feature importance

This �gure plots average feature importance of variables of the GBRT model. The fea-
ture importance is calculated as the improvement in accuracy brought by each predictor.
Improvement in accuracy is de�ned as the decrease in mean squared errors. The x-axis
is the average feature importance. Feature importance is standardized such that the to-
tal feature importance of all predictors are sum up to one. Red color indicates that the
feature belongs to FF06 variables.

The overlap between the FF06 factors and the top 10 feature importance factors in

Figure 4 is surprisingly limited. The remaining factors are all fairly reasonable, but have

much smaller impacts. In order we have operating cash �ow, return on investment capi-

tal, total liability, and so forth.

Next consider the permutation test of feature importance. It is also known as “Mean

DecreaseAccuracy”, see Louppe et al. (2013). This is another commonmethod to examine

the impact of individual factors.

The permutation importance of a predictor is de�ned as follows. First a model is

trained on the training sample. An evaluationmetric is calculated as baselinemetric. We

use R2 as the evaluation metric. Second, using testing data, a predictor column is ran-

domly permuted. Third, the trained model to make predictions on the permuted testing

sample, and use the same evaluating metric to calculate the performance of the model
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on the permuted testing sample. Finally, the di�erence between the baseline metric and

evaluating metric on the permuted testing sample is de�ned as the permutation impor-

tance of the predictor.

The random permutation for each predictor can be done N times. To implement

the permutation tests, we use the Python so�ware library https://eli5.readthedocs.io/en/

latest/ with the method: PermutationImportance.

Conceptually, impurity-based feature importance and permutation importance are

rather di�erent from each other. First, the calculations of impurity-based importance

are based solely on the training sample. Therefore, impurity-based feature importance

does not directly re�ect the predictive power of themodel on the testing sample. Second,

impurity-based measure is dependent on the cardinality of the predictor (Louppe et al.

(2013)) and is biased toward high cardinality predictors (Cerda and Varoquaux (2020)). In

contrast, permutation importance focuses on the predictions.

Despite the conceptual di�erences, the evidence in Figure 5 is reasonably similar to

that in Figure 4. Once again period t pro�t is by far the dominant factor. The ordering

of the subsequent factors is not the same as in Figure 4, although a number of the same

factor remain in the top 10 list.

6 Evidence of di�erences across �rms

The results so far establish that average �rm pro�ts are predictable. But there is consid-

erable heterogeneity among �rms. Accordingly, in the section we focus on that hetero-

geneity.

6.1 Predicted pro�t di�erences

Among the most frequently studied di�erence among �rms is the impact of �rm size. In

Table 5 �rms are sorted into quintiles by total assets on a date t. Within each quintile

average pro�ts for date t, and date t + 1 are reported along with the predicted date t + 1

pro�ts using the FM, FF06 model and using the gradient boosting, All model.
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Figure 5: Permutations tests of feature importance

This �gure plots the permutation importance distribution of variables of theGBRTmodel.
The permutation importance of a predictor is calculated as the average decrease in accu-
racy when the predictor value is randomly shu�ed. Each predictor is randomly shu�ed
30 times. The x-axis is the permutation importance. The distribution is plot as box plots.
Permutation value is standardized such that the total permutation of all predictors are
sum up to one. Red color indicates that the feature belongs to FF06 variables.

Within each quintile both date (t) and date (t+ 1) pro�ts are monotonic increasing as

�rm size increases until we reach quintile 4. Quintiles 4 and 5 have essentially the same

pro�tability relative to assets. The di�erences between the top and the bottom quintiles

are statistically signi�cant.

Expected pro�ts show similar patterns for expected pro�ts across estimationmethods

and factors. However the FM, FF06 model slightly over predicts average pro�ts in quin-

tiles 1, 2 and 3. The gradient boosting, All model does a better job of matching average

pro�ts over these three quintiles. Both models do a good job in the top size quintile 5.

So the advantage of gradient boosting relative to FM seems to be associated with doing
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Table 5: Are large �rms more pro�table?

This table reports pro�tability for �rms sorted into quintiles annually based on total assets at date t. “Small-
est" indicates that smallest assets quintile, “Largest" indicates the largest assets quintile. “L-S" reports the
average di�erence between the smallest �rm quintile and the largest. The t-stats are for tests that the “L-S"
values are di�erent from zero. The data and estimation methods are the same as in Table 2. *, **, and ***
denote statistical signi�cance at the 10%, 5%, and 1% level, respectively.

Quintile (1) (2) (3) (4) (5)

Smallest Largest L - S t-stat
Total assetst 21.56 79.56 229.82 725.17 7,483.72 7,462.17*** (89.89)
Observations 24,299 24,278 24,282 24,278 24,265

Pro�tt -0.00 0.09 0.13 0.14 0.14 0.14*** (77.62)
Pro�tt+1 -0.01 0.07 0.12 0.14 0.14 0.15*** (77.77)
EtPro�tt+1 0.02 0.09 0.13 0.14 0.14 0.12*** (81.84)
(FM, FF06)
EtPro�tt+1 -0.00 0.08 0.12 0.13 0.14 0.14*** (89.30)
(GBRT, All)

a better job of predicting average pro�ts for smaller �rms. For the largest �rms there is

less of an advantage. Overall, the data says that larger �rms are more pro�table and the

models capture this fact.

Table 6 examines �rms that exit. It tabulates pro�ts and expected pro�ts for �rms

that exit from the sample before the �nal year of our data (2015). The population average

pro�t (operating pro�t/ta) across all �rm and all time periods is 0.09.

Compustat reports several reasons for a �rm to exit. Let t be the �nal year that the

�rm exists in our data. In each case that a reason is reported, we provide the average

pro�tability for the previous year t − 1, now t and the expected pro�ts according to our

preferred model (GBRT, All).

There are noteworthy di�erences. Firms that are bankrupt or liquidated have much

lower pro�ts and would be expected to have low (or negative) pro�ts had they not exited.

That is also true of �rms in a ‘reverse acquisition’. A reverse acquisition happens when a

private �rm buys a public �rm in order to go public while avoiding an IPO.

Firms in an ordinary merger, acquisition or an LBO have positive pro�ts. Only the

LBO �rms have higher pro�ts than an average publicly traded �rm. These connections
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Table 6: Pro�ts and reasons for exit

This table reports pro�tability di�erences for �rms that exit from the data before the �nal year of the data,
2015. Year t is the last year that the �rm is in the data. So Etπt+1 is the pro�t that prediction as of year
t for the �rm, if it had not exited. It is based on the �nal available data prior to the exit. The Compustat
deletion code reported as footnote 35 gives a measure of why a �rm exits. Population average is de�ned as
the mean value of operating pro�tability of all �rm-year observations. Previous means the year before the
�nal year that the �rm is in the data. Now means the last year that the �rm is in the data. Expected is a
forecast based on GBRT estimation using Fama and French (2006), Frank and Goyal (2009), Frank and Yang
(2019), and Gu et al. (2020) variables together and estimation by Friedman (2002) method. Average is the
population average pro�tability. *, **, and *** denote the value is statistically signi�cantly di�erent from
the population average at the 10%, 5%, and 1% level, respectively.

population average π = 0.09

πt−1 πt Etπt+1 Obser

Bankruptcy 0.01*** -0.04*** 0.00*** 463
Liquidation 0.01*** -0.06*** -0.02*** 317
Reverse acquisition -0.15*** -0.19*** -0.16*** 132
Acquisition or merger 0.08*** 0.07*** 0.07*** 7174
Leveraged buyout 0.15*** 0.15*** 0.14*** 73
Now a private company 0.09 0.07** 0.08* 336

between expected �rm pro�t and the reason for �rm exit seem reasonable.

6.2 Predictability di�erences

Table 7 considers the connectionsbetweenanumberof�rmattributes and thepredictabil-

ity of pro�ts using minus the sum of squared residuals as our de�nition of predictability.

Firms are sorted into quintiles based on predictability and then a range of �rm attributes

are averaged within each quintile. Finally we test the hypothesis that the mean values of

the attribute are the same in the highest predicability quintile and the lowest predictabil-

ity quintile. This is done for GBRT, All, for FM, FF06, and then we also consider the dif-

ference between these estimates.

High pro�t �rms are much more predictable both using FM, FF06 and using GBRT,

All. Firms with high R&D to sales, market-to-book and cash �ow volatility are all less pre-

dictable. The results are generally stronger under gradient boosting, All than under the

FM, FF06model. However the basic predictability patterns are the same acrossmethods.
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6.3 Predictability during recessions

It is well known that �rms commonly make less pro�ts during recessions. But does the

predictability of pro�t also change? We examine 3 methods of prediction in Table 8:

GBRT, All; FM, FF06; and date t pro�t as a prediction of date t + 1 pro�ts. In all cases

we use minus the squared di�erence between actual πt+1 and Etπt+1 as the dependent

variable.

Table 8 Panel A, examines what happened during the �nancial crisis of Dec 2007 to

June 2009. During the crisis period there is a sharp drop in pro�t predictability according

to all models. The e�ect is strongest in the FM, FF06 model. In all models the drop in

predictability is much less acute for investment grade �rms. Suppose that in a �nancial

crisis investors are looking for predictable pro�ts – a version of a �ight to quality. Thenwe

should see them selling average �rms and buying investment grade �rms. Since supply

and demand for shares must still be equal, the relative prices would adjust with average

�rms falling relative to investment grade �rms.

Panel B extends the tests to all NBER recessions that took place during our sample

period. The results are very similar to those in Panel A. In this respect the �nancial crisis

looks very similar to any other recession. Overall we see that on average �rm pro�ts are

less predictable during recessions. This e�ect is large for an average �rm, but it is much

smaller for investment grade �rms.

7 Predictable pro�ts and the �ow of �nancial resources

In this section we ask whether �nancial resources tend to �ow to more pro�table �rms.

Using our estimates we can distinguish the impact of actual current pro�ts and expected

future pro�ts. While the supply and demand for existing shares must be equal, �rms can

issue or repurchase shares and debt securities thereby changing the volume of securities

that the �rm has outstanding.

According to themodel in Frank and Sanati (forthcoming) the distinction between ac-

tual pro�t and expected pro�t is critical for the �ow of �nance. In their model a �rm that
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Table 8: Predicting pro�ts in recessions

This table reports OLS regressions with ‘Predict’ as the dependent variable. It is a measure of how pre-
dictable pro�ts are and it is measured as the negative squared di�erence between predicted next period
pro�t and actual next period pro�t. The predicted pro�ts are estimated as in Table 2. In columns (4),
the dependent variable is the di�erence in pro�t predictability between the GBRT, All model and FF, FF06
model. InvGrade is an indicator variables that equals to one if the �rm in a given year has S&P Domestic
Long Term Issuer Credit Rating better or equal to BBB. Recession is an indicator variables that equals to
one if the data date ended in the NBER recession period. Crisis is an indicator variable that equals to one
if the data date ended in the NBER recession from Dec 2007 to June 2009 which is o�en called the Great
Recession. Standard errors are clustered at the �rm level, and t-statistics are in parentheses. *, **, and ***
denote statistical signi�cance at the 10%, 5%, and 1% level, respectively. Every column in this table has
23,262 observations, which are the observations with available long term bond rating.

Panel A Great Recession
Dec 2007 - June 2009

InvGrade*Crisis 17.93** 17.89** 24.07** 0.05
(2.20) (2.05) (2.34) (0.03)

InvGrade 22.32*** 23.19*** 26.12*** -0.87
(6.69) (6.52) (6.82) (-1.43)

Crisis -19.44** -21.97*** -29.12*** 2.53
(-2.48) (-2.61) (-2.93) (1.54)

Observations 23185 23185 23185 23185
Method GBRT, All FM, FF06 Pro�tt (GBRT, All) - (FM, FF06)
Adjusted R2 0.003 0.003 0.004 0.000

Panel B NBER Recessions

Predictt+1 Predictt+1 Predictt+1 Predictt+1

di�erence
InvGrade*Recession 19.06* 19.41* 23.43** -0.36

(1.88) (1.84) (2.09) (-0.23)
InvGrade 21.74*** 22.61*** 25.61*** -0.87

(6.54) (6.36) (6.66) (-1.40)
Recession -19.40* -21.62** -26.19** 2.21

(-1.95) (-2.09) (-2.39) (1.49)
Observations 23185 23185 23185 23185
Method GBRT, All FM, FF06 Pro�tt (GBRT, All) - (FM, FF06)
Adjusted R2 0.003 0.003 0.004 0.000

has a positive productivity shock would like to invest more to take advantage. If uncon-

strained, the �rm would issue debt to pay for the capital and exploit the tax advantage.

However due to �nancing constraints the �rm does not have adequate capital. So when
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Table 9: Pro�ts and �nancing �ows

This table reports the e�ect of pro�tability and expected pro�tability on debt and and equity issuance and
repurchasing. GBRT is used to forecast next period operating pro�t, πt+1, using prior information avail-
able at time t including the variables from Fama and French (2006), Frank and Goyal (2009), Frank and
Yang (2019), and Gu et al. (2020) together. A constant term, year �xed e�ect, �rm �xed e�ect, and �rm
control variables are included (Frank and Goyal, 2009). Standard errors are clustered at the �rm level, and
t-statistics are in parentheses. The dependent variable is always based on information that was available
prior to the start of the time period. *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% level,
respectively. Every column in this table has 119, 955 observations.

Debtt Equityt Assets Growth

Dep var Net Iss Gross Iss Repur Net Iss Gross Iss Repur ∆t,t+1AT

ATt

Pro�tt 0.06*** -0.02* -0.08*** -0.25*** -0.25*** -0.00 -0.10*
(6.72) (-1.95) (-8.47) (-12.95) (-12.92) (-0.63) (-1.85)

EtPro�tt+1 -0.02** 0.03** 0.06*** 0.07*** 0.10*** 0.04*** 0.49***
(-2.23) (1.99) (4.70) (2.85) (4.25) (8.98) (7.00)

Year FE Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.07 0.39 0.40 0.46 0.46 0.23 0.23

pro�ts are expected the �rm issues equity and repurchases debt in order to buy more

capital. Once it has the extra capital, together with the positive productivity shock the

�rm generates more actual pro�ts. When the �rm has actual pro�ts and more capital as

collateral, it issues debt to take average of the tax bene�t and it repurchase the expensive

equity.

Table 9 produces a pattern of coe�cients on expected and actual pro�ts are similar to

the predictions of Frank and Sanati (forthcoming). A �rmwith high expected pro�t tends

to reduce debt and raise funds by issuing equity. As time passes and the expected pro�ts

turns (on average) into actual pro�ts the �rm’s �nancing constraints are relaxed. Now the

�rm uses the pro�ts to repurchase equity. Because the constraints have been relaxed the

�rm issues debt. That permits the �rm to take advantage of the tax bene�t of the debt, as

in Frank and Sanati (forthcoming).

The �nal column of Table 9 shows that expected future pro�t has a stronger e�ect on

asset growth than does actual current pro�t. This is consistent with the forward-looking
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positive NPV investment theory that is commonly taught.

8 Predictablepro�tsand thecross-sectionof stockreturns

It is well known that measures of �rm pro�t are connected to stock returns (Fama and

French, 2006; Novy-Marx, 2013; Fama and French, 2015). Because gradient boosting with

All factors has reasonable predictive power, we examine it’s potential use for this purpose.

We follow Fama and French (2006) and Aharoni et al. (2013) to test how well expected

pro�t explains cross-sectional stock returns.

Using the notation from Fama and French (2006) and Aharoni et al. (2013), the �rm’s

valuation equation is,

Mt

Bt

=
∞∑
τ=1

E(Yt+τ/Bt)− E(∆Bt+τ/BT )

(1 + r)τ

whereMt is the market value of equity, Bt is the book value of equity, Yt is pro�t, r is the

average expected stock return.

Controlling for Mt

Bt
and expected growth in book equity, more pro�table �rms have

higher expected returns. Therefore, adding expected pro�t and expected asset growth

could help explain the cross-sectional stock returns. So the key idea for this purpose is

that a better expected pro�t measure should explain better the cross-sectional stock re-

turns. To examine the e�cacy of the expected pro�t measures we follow the procedure

developed and used in Fama and French (2006) and Aharoni et al. (2013).

Portfolios are constructed based on predicted return according to models using the

distinct expected pro�t measures. The portfolios are sorted into quintiles based on the

predicted returns. Then we examine the realized return di�erences between portfolios

of stocks with high predicted returns vs portfolios of stocks with low predicted returns. If

amodel is better at explaining cross-sectional returns, then there will be a larger realized

return di�erences between the high and the low portfolios.

Predicted return are estimated monthly using Fama-MacBeth regressions for the July
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1975 to December 2015 sample period.

ri,t+1,k = θ0 + θ1 ln bkmkti,t + θ2 lnmvi,t+1 + θ3Etπt+1 + θ1 lnEt∆t+1AT/ATt

To test the explanatory power of di�erent expected pro�t measures in the valuation

equation framework, we add expected pro�t and expected asset growth to predict return

when allocating stocks. To be consistent, we measure expected asset growth estimated

using Fama andMacBeth (1973) regressions and Fama and French (2006) predictors. Col-

umn (1) uses size and market-to-book only as a benchmark.

Column (2) uses pro�t on date t as expected pro�t measure (Etπt+1 ≡ πt). Column (3)

measures expected pro�t estimated using Fama-MacBeth regressions with FF06 factors.

Column (4) uses gradient boosting with All factors to measure expected pro�ts.

Column (2) using date t pro�t as expected pro�t, �nds that the monthly return spread

between high and low portfolio is 0.82%. This is larger than the return spread in column

(1). The di�erence is 0.12% per month.

Using Fama MacBeth to measure expected pro�t in column (3), the return spread in-

crease from 0.82% per month (in column 2), to 0.89% per month. Column (4) uses gra-

dient boosting with All factors produces a similar spread to column (3). To some degree

this apparently this re�ects the use of quintiles. In untabulated results we did the same

analysis but using 25 portfolios instead of quintiles. In that cased gradient boosting with

All factors generates a larger spread than does Fama-MacBeth with FF06 factors.1

The results for the abnormal return spread seem reasonable. Existing literature in

pro�tability premium (Novy-Marx, 2013; Wang and Yu, 2013) has documented that the

pro�tability premium exists primarily among �rms with low book-to-market ratios and

�rmswith high information uncertainty. Table 7 shows that the improvement of gradient

boosting-based expected pro�ts are concentrated among �rms with low book-to-market
1The results are similar whenwe followed Novy-Marx (2013) and calculated value-weighted portfolio ex-

cess returns and the α from a 3-factor model that is sorted on expected pro�ts, see Table C8. The results
are not totally due to denominator e�ects (e.g., Ball et al. (2015)). When we de�ne pro�tability as the oper-
ating pro�t scaled by lagged total assets, the same pattern of results is found from Table C9. Moreover, in
Table C12 we �nd that the improvement of GBRT model is stronger for income de�ated by the book value
of equity.
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Table 10: Pro�ts and the cross section of expected stock returns

This table presents the monthly value-weighted average realized returns and spreads of portfolios formed
on predicted returns. The predicted return are estimated monthly using Fama and MacBeth (1973) regres-
sions for July 1976 to June 2016 sample period.

ri,t+1,k = θ0 + θ1 ln bkmkti,t + θ2 lnmvi,t+1 + θ3Etπt+1 + θ1 lnEt∆t+1AT/ATt

ri,t+1,k is the return on stock i in the kth month of the 12 months from the July of calendar year t + 1

to the June of calendar year t + 2. i also denotes stock i in all the independent variables. Book-to-market,
ln bkmkti,t, is the logarithmof the book value of equity at the end of the �scal year that ends in calendar year
t divided by the market value of equity at the end of calendar year t. Size, lnmvi,t+1, is the logarithm of the
market value of equity at the endof June of calendar year t+1. Expectedpro�tability,Etπt+1, is the expected
value of pro�t in the �scal year ending in calendar year t+1. Expected asset growth, Et∆t+1AT/ATt, is the
expected growth of total assets in the �scal year ending in calendar year t+1. In column (1) independent
variables used to predict return are size and book-to-market only, which is the benchmark portfolio. In
columns (2)-(4), we add expected asset growth and expected pro�tability. To be consistent, we measure
expected asset growth estimated using Fama and MacBeth (1973) regressions and Fama and French (2006)
predictors. In columns (2), we use pro�t now as expected pro�t measure (Etπt+1 ≡ πt). In columns (3), we
measure expected pro�t estimated using Fama andMacBeth (1973) regressions and Fama andFrench (2006)
predictors, In columns (4), we measure using GBRT and all predictors. The expected pro�ts are estimated
similarly as in Table 2. Predicted return from July of year t to June of year t+1, the �tted value from the Fama
and MacBeth (1973) regression equation, are the product of average regressions slopes and explanatory
variables at the end of June of year t. Stocks are sorted into quintiles according to their predicted return.
Value-weighted average return is calculated for each group. We report the average realized returns of the
portfolio with the lowest predicted return (Low) and the portfolio with the highest predicted return (High).
The returns are in percentage points, so for example 2, means the monthly return is 2%. We calculate
the spread between the highest and lowest predicted return portfolios (High - Low). We also compute the
average di�erence and t-test statistics (in the brackets) between the “High - Low" spread in each column
and the benchmark "High - Low" spread in column (1). *, **, and *** denote statistical signi�cance at the
10%, 5%, and 1% level, respectively. Every portfolio has 480 monthly observations.

(1) (2) (3) (4)

Portfolio size+value Pro�tt EtPro�tt+1 EtPro�tt+1

Low 0.55 0.52 0.53 0.53
High 1.26 1.34 1.42 1.42
High - Low 0.70 0.82 0.89 0.89

Aver di� 0.12 0.19 0.19
t-statistic 1.68 2.69 2.90

Method FM,FF06 GBRT,All
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ratio and high cash-�ow uncertainty. So it seems reasonable that a gradient boosting

basedmeasure of expected pro�ts could improve the empirical performance of the prof-

itability premium among �rms that are particularly sensitive to that factor.

9 Predictable pro�ts predictionmistakes?

An alternative approach to consider pro�t predictions is to connect the predictions to

rational expectations. Nagel (2021) has suggested that machine learning predictions pro-

vide a reasonable as-if model of the expectations of actual investors. On the other hand

Bordalo et al. (2021), �nd that people have ‘diagnostic expectations’ and so they overreact

to shocks. If Nagel (2021) is right, then the algorithms ought to generate the same coe�-

cient patterns found among stock analysts by Bordalo et al. (2021). Is that actually true of

the data? This section examines this hypothesis.

For comparabilityweadopt the frameworkusedbyBordalo et al. (2021), see alsoAfrouzi

et al. (2020). Specify,

Eθt (πt+1) = Et(πt+1) + θ[Et(πt+1)− Et−1(πt+1)] (10)

where πt+1 is pro�ts at date t+1,Et(·) is the rational expectations at date t. They call θ ≥ 0

a diagnosticity parameter. They say that θ = 0 means rational expectations, while θ > 0

means that “agents overreact to news, becoming too optimistic a�er good news and too

pessimistic a�er bad news”.

Bordalo et al. (2021) run linear regressions in which the dependent variable is the er-

ror at date t+1 of stock analyst predictions from IBES. The independent variables are date

t values of the forecast, pro�t, investment, or debt issuance. In each of these regressions

�rm and year �xed e�ects are included. According to Bordalo et al. (2021) under ratio-

nal expectations the slope coe�cients should be zero. Under diagnostic expectations the

slope coe�cients should be negative. That is because of beliefs that overreact both to

good and to bad news. Bordalo et al. (2021) use linear regressions with �xed e�ects to

carry out this test. We follow Bordalo et al. (2021) in Table 11. We also add a column (1)
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Table 11: Are prediction errors linearly predictable?

This follows Table 1 in Bordalo et al. (2021), regressing prediction error at t+ 1 on the information at time
t. Prediction mistake at t + 1 is Prediction Errort+1 := pt+1 − Etpt+1, where Et is the model prediction
based on date t data. Panel A uses Fama and MacBeth (1973) estimation and FF06 variables as the predic-
tion model. Panel B uses GBRT and All variables. Four di�erent information available at time t are used.
Prediction Errort := pt −Et−1pt is prediction error at time t. Pro�tt = operating pro�t(t)

total assets(t) is pro�tability at time
t. Investmentt = capital expenditure(t)

total assets(t) is investment rate at time t. Debt issuancet is net debt issuance at time t.
Column (1) has fewer observations due to unavailable forecasts when �rm enters the sample at time t.

(1) (2) (3) (4) (5)
Panel A Prediction errort+1

Prediction Errort -0.24***
(-24.63)

EtPro�tt+1 -0.37***
(-30.10)

Pro�tt -0.29***
(-30.10)

Investmentt -0.02**
(-2.03)

Debt issuancet -0.02**
(-2.19)

Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Method FM,FF06 FM,FF06 FM,FF06 FM,FF06 FM,FF06
Observations 106290 119955 119955 119955 119955
Adjusted R2 0.16 0.21 0.21 0.13 0.13

Panel B Prediction errort+1

Prediction Errort -0.13***
(-14.43)

Et Pro�tt+1 -0.31***
(-28.76)

Pro�tt -0.21***
(-23.41)

Investmentt -0.02***
(-2.85)

Debt issuancet 0.05***
(6.11)

Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Method GBRT,All GBRT,All GBRT,All GBRT,All GBRT,All
Observations 106290 119955 119955 119955 119955
Adjusted R2 0.11 0.15 0.14 0.10 0.10
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that uses the prediction error at date t as an alternative regressor. Columns (2) - (5) use

the speci�cations from Bordalo et al. (2021) but using the algorithms to generate the pre-

dictions being evaluated.

Table 11 PanelAprovides results for pro�t predictions generatedusingFama-MacBeth,

FF06. Panel B provides results for pro�t predictions using gradient boosting, All. Under

this testing framework the predictability of the prediction errors are remarkably similar.

In Panel A, all �ve columns produce statistically signi�cant linear predictability of the

prediction errors. In all cases the coe�cient is negative and statistically signi�cant. This

is the same pattern of results reported by Bordalo et al. (2021) for stock analysts. Rational

expectations is sharply rejected in favor of “overreaction”.

Panel B carries out the same regressions as Panel A, but using the predictions gener-

ated by gradient boosting. There is a marginal reduction in the explanatory power of the

regressions compared to Panel A. However, the results in columns (1) to (4) are again all

negative and all statistically signi�cant. In column (5) debt issuance is used as a factor

and the sign reverses. It is again statistically signi�cant. There is no obvious reason for

this sign reversal, and it is likely simply a re�ection of sampling variation. The key re-

sult of Panel B is that as in Panel A, rational expectations is rejected, and the bulk of the

evidence is similar to Bordalo et al. (2021).

To digmore deeply into the nature of the linear predictability of the prediction errors,

Table 12 redoes the prediction models, but introduces the date t prediction mistake as a

factor when predicting date t + 1 pro�ts. For comparison Panel A provides the baseline

results.

Notice that the Table 12 Panel A is not quite the same as Table 2. In Table 2 the predic-

tion period is 1975 to 2015. In Table 12 the prediction period is 1991 to 2015. In Table 12 the

prediction errors are only available a�er 1975. In order to include as many predictions

errors as possible, in Panel B we make predictions from 1991 to 2015. To make Panel A

consistent with Panel B, we use the same prediction period, which is why it di�ers from

Table 2.

In Table 12 columns (1) and (2) use Fama-MacBeth estimation and columns (3) and

(4) use gradient boosting. The results are very sharp. In columns (1) and (2) the out-of-
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Table 12: Current prediction errors as a factor

Pro�ts are predicted for 1991 to 2015. Rolling estimation uses strictly prior data from 1974 to 2014 to make
(pseudo) out-of-sample predictions. Cross validation and in-sample estimation uses data from 1990 to 2014
to make the predictions. The variable being predicted is operating pro�t(t+1)

total assets(t+1) . The amount of variation ex-

plained is denoted R2. In-sample R2 is calculated as 1−
∑

(π̂i,t+1−πi,t+1)2∑
(πi,t+1−π̄i,t+1)2 . For the cross validation we form

10 equally large groups strati�ed by year. 9 groups are used to estimate and then predict for the le� out
group. This is done 10 times. Then an average R2 is computed for all 10 groups. Out-sample R2 means that
data from 1974 to 2014 is used to estimate the model on a rolling basis. The predictions are for 1991 to 2015.
The models are �t using information from 1974 until time t to predict pro�ts at time t+1. The out-of-sample
R2 is calculated as 1−

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2

. Estimation using the Fama and MacBeth (1973) method is denoted
FM. Estimation using the Friedman (2002) method is denoted GBRT. When the data used as explanatory
variables follows Fama and French (2006) it is denoted FF06. When the data used as explanatory variables
are all factors used in Fama and French (2006), Frank and Goyal (2009), Frank and Yang (2019), and Gu et al.
(2020) it is denoted All. In Panel B, we add the current prediction error de�ned in Table 11 as an additional
predictor. Data construction details are provided in the appendix.

Panel A: Prediction errors not included (1) (2) (3) (4)

Estimation Method FM FM GBRT GBRT
Data FF06 All FF06 All
In-Sample R2 0.66 -0.20 0.69 0.73
10 fold CV R2 0.06 -3.27 0.11 0.18
Out-of-Sample R2 0.04 -3496.42 0.11 0.15

Panel B: Prediction errors included as a factor (1) (2) (3) (4)

Estimation Method FM FM GBRT GBRT
Data FF06 All FF06 All
In-Sample R2 0.66 -0.26 0.70 0.73
10 fold CV R2 0.08 -3.49 0.12 0.18
Out-of-Sample R2 0.07 -0.50 0.11 0.14

sample R2 values increase markedly. In columns (3) and (4) there is no change to the

out-of-sample R2 values.

The results in columns (3) and (4) may seem at odds with the Panel B results from

11. How can both hold at the same time? Table 11 is about linear predictability. Table 12

columns (3) and (4) are about forest based predictability. These are not the same thing.

In themachine learning literature is o�en found that ensembles of algorithms outper-

form the individual algorithms, seeHastie et al. (2009). Usually the ensemble is formedby

voting across algorithms. Here we are only considering two approaches Fama-MacBeth
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regressions and gradient boosting. Combining the Tables we see that a two step proce-

dure will improve the forecasts. Step 1 is to use the gradient boosting. Step 2 takes the

result from the gradient boosting and then uses it in a linear regression. Table 11 shows

that this second step will improve predictions relative to just using the gradient boosting

alone.

How do we interpret the results from Tables 11 and 12? It is clear the algorithms reject

the Bordalo et al. (2021) interpretation of rational expectations. The algorithms generate

quite similar patterns of estimated coe�cients to those from stock analysts. So the Nagel

(2021) as-if interpretation seems reasonable. On the other hand the algorithms treat all

observation equally at the start, and they have no emotions in the usual sense of the term.

The negative coe�cients may have a di�erent source than has been suggested in the lit-

erature.

This section shows that both Fama-MacBeth and gradient boosting produce pro�t pre-

diction mistakes that are linearly predictable. Improvements in the pro�t prediction are

likely obtainable using ensemble methods. Such an investigation would be interesting

and might help cast light on issues like �rm credit ratings. However, it is outside the

scope of this paper.

10 Conclusion

This paper compares �rm pro�t predictions based on Fama-MacBeth regressions to pre-

dictions based on gradient boosting. Gradient boosting provides higher quality predic-

tions due to their ability to include many more factors. The predictions are evaluated

directly and also in three test settings; one from behavioral �nance, one from corporate

�nance, and one from asset pricing.

When test from behavioral �nance are applied to the predictions, the predictions ap-

parently ‘overreact’. This is true both of predictions based on Fama-MacBeth and those

based on gradient boosting. The algorithms generate predictions that are ‘too optimistic’

in good times and ‘too pessimistic’ in bad times. When testing human predictions, this

pattern of estimated coe�cients has been attributed to emotional human decision mak-
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ing (Bordalo et al., 2021). Of course, neither Fama-MacBeth nor gradient boosting are

emotional in the usual sense of the term.

In corporate �nance investors would like to fund pro�table opportunities and avoid

unpro�table investments. According to Frank and Sanati (forthcoming) actual pro�t and

predicted pro�t a�ect �rm �nancing decisions di�erently. As in that model, we �nd that

when a �rm expects future pro�ts it tends to issue equity and reduce debt. When a �rm

has current pro�ts it tends to repurchase equity and issue debt.

In asset pricing pro�ts and/or pro�t expectations are commonly thought to a�ect the

cross section of stock returns (Novy-Marx, 2013; Fama and French, 2015). The pro�t pre-

dictions from gradient boosting provide a potentially useful alternative proxy to income

(Fama and French, 2006) or to gross pro�t (Novy-Marx, 2013), when studying the cross

section of stock returns. The properties are generally similar but the magnitudes seem

somewhat stronger.

In theory �rms try to maximize expected pro�ts. We �nd that many actual �rm ac-

tions and market values are readily understood in that way. There may be room to fur-

ther improve the pro�t predictions by exploiting ensembles, or perhaps by using deep

learning. Whether such technical improvements will alter our understanding of the role

of expected �rm pro�ts deserves future investigation.

References
Afrouzi, Hassan, Spencer Yongwook Kwon, Augustin Landier, Yueran Ma, and David
Thesmar, “Overreaction and Working Memory,” NBER Working Paper, 2020, (w27947).

Aharoni, Gil, Bruce Grundy, and Qi Zeng, “Stock returns and the Miller Modigliani val-
uation formula: Revisiting the Fama French analysis,” Journal of Financial Economics,
2013, 110 (2), 347–357.

Ai, Hengjie, Murray Z Frank, and Ali Sanati, “The Trade-O� Theory of Corpo-
rate Capital Structure,” Oxford Research Encyclopedia of Economics and Finance, 2021,
https://ssrn.com/abstract=3595492.

Ball, Ray, JosephGerakos, Juhani T Linnainmaa, andValeri VNikolaev, “De�ating prof-
itability,” Journal of Financial Economics, 2015, 117 (2), 225–248.

42



Bates, Stephen, Trevor Hastie, and Robert Tibshirani, “Cross-validation: what does it
estimate and how well does it do it?,” https://arxiv.org/abs/2104.00673, 2021.

Bordalo, Pedro, Nicola Gennaioli, Andrei Shleifer, and Stephen J Terry, “Real credit cy-
cles,” Technical Report, National Bureau of Economic Research, Paper 28416 2021.

Campbell, John Y, Financial decisions and markets: a course in asset pricing, Princeton Uni-
versity Press, 2017.

Cerda, Patricio and Gaël Varoquaux, “Encoding high-cardinality string categorical vari-
ables,” IEEE Transactions on Knowledge and Data Engineering, 2020.

Chen, Tianqi and Carlos Guestrin, “XGBoost: A scalable tree boosting system,” in “Pro-
ceedings of the 22ndACMsigkdd international conference onknowledge discovery and
data mining” ACM 2016, pp. 785–794.

D’Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi,
Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Ho�-
man et al., “Underspeci�cation presents challenges for credibility in modernmachine
learning,” arXiv preprint arXiv:2011.03395, 2020.

Danis, András, Daniel A Rettl, and Toni MWhited, “Re�nancing, pro�tability, and capi-
tal structure,” Journal of Financial Economics, 2014, 114 (3), 424–443.

Diebold, Francis X, “Comparing predictive accuracy, twenty years later: A personal per-
spective on the use and abuse of Diebold–Mariano tests,” Journal of Business and Eco-
nomic Statistics, 2015, 33 (1), 1–1.

and Robert S Mariano, “Comparing predictive accuracy,” Journal of Business and Eco-
nomic Statistics, 2002, 20 (1), 134–144.

Eckbo, B Espen and Michael Kisser, “Tradeo� theory and leverage dynamics of high-
frequency debt issuers,” Review of Finance, 2021, 25 (2), 275–324.

Efron,BradleyandTrevorHastie,Computer age statistical inference, CambridgeUniversity
Press, 2016.

Erel, Isil, LéaHStern, ChenhaoTan, andMichael SWeisbach, “Selecting directors using
machine learning,” Review of Financial Studies, 2021, 34 (7), 3226–3264.

Fama, Eugene F and James DMacBeth, “Risk, return, and equilibrium: Empirical tests,”
Journal of Political Economy, 1973, 81 (3), 607–636.

andKennethFrench, “Dividend yields and expected stock returns,” Journal of Financial
Economics, 1988, 22 (1), 3–25.

and Kenneth R French, “Testing trade-o� and pecking order predictions about divi-
dends and debt,” Review of Financial Studies, 2002, 15 (1), 1–33.

43



and , “Pro�tability, investment and average returns,” Journal of Financial Economics,
2006, 82 (3), 491–518.

and , “A �ve-factor asset pricing model,” Journal of Financial Economics, 2015, 116 (1),
1–22.

Frank, Murray Z and Ali Sanati, “Financing corporate growth,” Review of Financial Stud-
ies, forthcoming.

and Keer Yang, “Does Finance Flow to High Productivity Firms?,”
https://ssrn.com/abstract=3295140, 2019.

and Vidhan K Goyal, “Capital structure decisions: which factors are reliably impor-
tant?,” Financial Management, 2009, 38 (1), 1–37.

and , “Thepro�ts–leveragepuzzle revisited,”Review of Finance, 2015, 19 (4), 1415–1453.

Friedman, JeromeH, “Stochastic gradient boosting,” Computational Statistics &DataAnal-
ysis, 2002, 38 (4), 367–378.

Green, Jeremiah, John RMHand, and X Frank Zhang, “The characteristics that provide
independent information about average us monthly stock returns,” Review of Financial
Studies, 2017, 30 (12), 4389–4436.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, “Empirical asset pricing via machine learn-
ing,” Review of Financial Studies, 2020, 33 (5), 2223–2273.

Harvey, Campbell R, Yan Liu, and Heqing Zhu, “. . . and the cross-section of expected
returns,” Review of Financial Studies, 2016, 29 (1), 5–68.

Hastie, Trevor, Robert Tibshirani, and JeromeFriedman, The elements of statistical learn-
ing: datamining, inference, and prediction, 2nd edition, 2 ed., Springer Science&Business
Media, 2009.

Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang, “Which factors?,” Review of Finance,
2019, 23 (1), 1–35.

Inoue, Atsushi and Lutz Kilian, “In-sample or out-of-sample tests of predictability:
Which one should we use?,” Econometric Reviews, 2005, 23 (4), 371–402.

Li, Bin and Alberto G Rossi, “Selecting Mutual Funds from the Stocks They Hold: A Ma-
chine Learning Approach,” Available at SSRN 3737667, 2020.

Louppe, Gilles, Louis Wehenkel, Antonio Sutera, and Pierre Geurts, “Understanding
variable importances in forests of randomized trees,” Advances in neural information
processing systems, 2013, 26, 431–439.

Mitton, Todd, “Methodological variation in empirical corporate �nance,”Review of Finan-
cial Studies, forthcoming, Available at SSRN 3304875.

44



Myers, Stewart C, “The capital structure puzzle,” Journal of Finance, 1984, 39 (3), 574–592.

Nagel, Stefan,Machine Learning in Asset Pricing, Princeton University Press, 2021.

Novy-Marx, Robert, “The other side of value: The gross pro�tability premium,” Journal
of Financial Economics, 2013, 108 (1), 1–28.

Petersen, Mitchell A, “Estimating standard errors in �nance panel data sets: Comparing
approaches,” Review of Financial Studies, 2009, 22 (1), 435–480.

van Binsbergen, Jules H, XiaoHan, and Alejandro Lopez-Lira, “Man vs. Machine Learn-
ing: The Term Structure of Earnings Expectations and Conditional Biases,”NBERWork-
ing Paper, 2020, (w27843).

Wang, Huijun and Jianfeng Yu, “Dissecting the pro�tability premium,” in “AFA 2013 San
Diego meetings paper” 2013.

Welch, Ivo and Amit Goyal, “A comprehensive look at the empirical performance of eq-
uity premium prediction,” Review of Financial Studies, 2008, 21 (4), 1455–1508.

45



A Appendix: data sources in detail

Table A1: Variable De�nitions

(a)

This table de�nes pro�tabilitymeasures and variables as in Fama and French (2006). The
variables are constructed using Compustat Annual data. Time subscription t is omitted if
the variable is measured contemporaneously. 1 is the indicator function.

Pro�tability Measures
Y G
t gross pro�ts SALEt − COGSt
πGt gross pro�tability (SALEt − COGSt)/ATt
πGLagt gross pro�tability (lag) (SALEt − COGSt)/ATt−1

Y OP
t operating pro�ts SALEt − COGSt −XSGAt
πOPt operating pro�tability (SALEt − COGSt −XSGAt)/ATt
πOPLagt operating pro�tability (lag) (SALEt − COGSt −XSGAt)/ATt−1

Y Inc
t income pro�ts IBt

πInct income pro�tability IBt/BEt
πIncLagt income pro�tability (lag) IBt/BEt−1

Other Variables
BEt book equity ATt − LTt + TXDITCt − PSTKLt
ACt accruals (ACT − CHE − LCT +DLC)t−

−(ACT − CHE − LCT +DLC)t−1

DIVt dividends (DV PSXF ∗ CSHO)t

Variables from Fama and French (2006)
lnB/M log book to market log(PRCC_F*CSHO)
lnMC log market cap log(PRCC_F*CSHO)
Neg Y dummy variable for �rms with negative pro�ts 1(Y < 0)
-AC/AT negative accruals min(AC, 0)/AT
+AC/AT positive accruals max(AC, 0)/AT
∆tA/A asset growth ATt/ATt−1 − 1
No DIV dummy variable for �rms with zero dividends 1(DIV = 0)
DIV/BE dividends DIV/BE
-AC/BE negative accruals min(AC, 0)/BE
+AC/BE positive accruals max(AC, 0)/BE
∆tBE/BE asset growth BEt/BEt−1 − 1
DIV/AT dividends DIV/AT
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Table A1: Variable De�nitions – Continued

(b)

This table de�nes �nancial �ow variables as in Frank and Goyal (2009). The variables are
constructed usingCompustat Annual data. Time subscription t is omitted if the variable is
measured contemporaneously. The table also de�nes Goyal-Welch macro variables from
Welch and Goyal (2008), which is directly downloaded from Welch’s website. The GDP
data is from Federal Reserve Economic Data.

Financial Flows
D Net Iss Debt Net Issuance (DLTIS −DLTR +DLCCH)/AT
D Iss Debt Issuance (max(DLTIS, 0) + max(DLCCH, 0))/AT
D Rep Debt Repurchase (max(DLTR, 0)−min(DLCCH, 0))/AT
E Net Iss Equity Net Issuance (SSTK − PRSTKC)/AT
E Iss Equity Issuance (max(SSTK, 0))/AT
E Rep Equity Repurchase max(PRSTKC, 0)/AT

Frank and Goyal (2009) Variables
mktbk Market to Book (AT + (PRCC_F ∗ CSHO)− SEQ− TXDB)/AT
tang Tangibility PPENT/AT
asset Assets log(AT )
div Dividend 1(DIV 6= 0)
tdm Market Leverage (DLTT +DLC)/(AT + PRCC_F ∗ CSHO − SEQ− TXDB)
tda Book Leverage (DLTT +DLC)/(AT )

Welch and Goyal (2008) Macro Variables
macro_bm Book to Market
macro_tbl Treasury bill rate
macro_ntis Net Equity Expansion
macro_svar Stock Variance
macro_dp Dividend price ratio
macro_ep Earning Price Ratio
macro_tms Term Spread
macro_dfy Default Yield Spread
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Table A1: Variable De�nitions – Continued

(c)

This table de�nes�nancial statement variableswhich serves as potential pro�tability pre-
dictors based on Frank and Yang (2019). The variables are constructed using Compustat
Annual data. Time subscription t is omitted if the variable is measured contemporane-
ously.

Financial statements variables
sale_at Sales SALE/AT
cogs_at Cost of Goods Sold COGS/AT
xsga_at Selling General and Administrative Expense XSGA/AT
dp_at Depreciation and Amortization DP/AT
xint_at Interest and Related Expense - Total XINT/AT
nopi_at Nonoperating Income (Expense) NOPI/AT
spi_at Special Items SPI/AT
txt_at Income Taxes TXT/AT
mii_at Minority Interest (Income Account) MII/AT
dvp_at Dividends - Preferred/Preference DV P/AT
cstke_at Common Stock Equivalents CSTKE/AT
xido_at Extraordinary Items and Discontinued Operations XIDO/AT
che_at Cash and Short-Term Investments CHE/AT
rect_at Receivables RECT/AT
invt_at Inventories INV T/AT
aco_at Other Current Assets ACO/AT
act_at Total Current Assets ACT/AT
ivaeq_at Investment and Advances - Equity IV AEQ/AT
ivao_at Investment and Advances/Other IV AO/AT
intan_at Intangible Assets INTAN/AT
ao_at Other Assets AO/AT
dlc_at Current Debt DLC/AT
ap_at Accounts Payable AP/AT
txp_at Income Taxes Payable TXP/AT
lco_at Other Current Liabilities LCO/AT
lct_at Current Liabilities LCT/AT
dltt_at Long-Term Debt DLTT/AT
lo_at Other Liabilities LO/AT
txditc_at Deferred Taxes and Investment Tax Credit TXDITC/AT
mib_at Minority Interest (Balance Sheet) MIB/AT
lt_at Total Liabilities LT/AT
pstk_at Total Preferred Stock PSTK/AT
ceq_at Total Common Stock CEQ/AT
seq_at Stockholders Equity SEQ/AT
oancf_at Operating Activities Net Cash Flow OANCF/AT
ivncf_at Investing Activities Net Cash Flow IV NCF/AT
�ncf_at Financing Activities Net Cash Flow FINCF/AT
chech_at Cash and Cash Equivalents Change CHECH/AT
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Table C1: Predicting pro�ts without Pro�tt

Pro�ts are predicted for 1976 to 2015. Rolling estimation uses strictly prior data from 1964 to 2014 to make
(pseudo) out-of-sample predictions. The variable being predicted is operating pro�t(t+1)

total assets(t+1) . The amount of vari-
ation explained is denoted R2. Out-sample R2 means that data from 1964 to 2014 is used to estimate the
model on a rolling basis. The predictions are for 1976 to 2015. The models are �t using information from
1964 until time t to predict pro�ts at time t+1. The out-of-sampleR2 is calculated as 1−

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2

. Es-
timation using the Fama andMacBeth (1973) method is denoted FM. Estimation using the Friedman (2002)
method is denoted GBRT. When the data used as explanatory variables follows Fama and French (2006) ex-
cept for Pro�tt, it is denoted FF06 (no Pro�tt). When the data used as explanatory variables are all factors
used in Fama and French (2006), Frank and Goyal (2009), Frank and Yang (2019), Gu et al. (2020), and ex-
cept for Pro�tt, it is denoted All (no Pro�tt). When the data used as explanatory variables follows Fama and
French (2006) and using year average Pro�tt instead of Pro�tt, it is denoted FF06 (Average Pro�tt). When the
data used as explanatory variables are all factors used in Fama and French (2006), Frank and Goyal (2009),
Frank and Yang (2019), Gu et al. (2020), and using year average Pro�tt instead of Pro�tt, it is denoted All
(average Pro�tt). Data construction details are provided in the appendix. Every cell in this table has 121,401
observations.

(1) (2) (3) (4)

Estimation Method FM FM GBRT GBRT
Data FF06 All FF06 All

(no Pro�tt) (no Pro�tt) (no Pro�tt) (no Pro�tt)
Out-of-Sample R2 -0.97 -3045.21 -0.44 0.08

Estimation Method FM FM GBRT GBRT
Data FF06 All FF06 All

(average Pro�tt) (average Pro�tt) (average Pro�tt) (average Pro�tt)
Out-of-Sample R2 -0.97 -3045.21 -0.41 0.09
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Table C2: Predicting Gross pro�ts and Income

Pro�ts are predicted for 1976 to 2015. Rolling estimation uses strictly prior data from 1964 to 2014 to make
(pseudo) out-of-sample predictions. The variable being predicted is operating pro�t(t+1)

total assets(t+1) . The amount of vari-
ation explained is denoted R2. Out-sample R2 means that data from 1964 to 2014 is used to estimate the
model on a rolling basis. The predictions are for 1976 to 2015. The models are �t using information from
1964 until time t to predict pro�ts at time t+1. The out-of-sampleR2 is calculated as 1−

∑
(π̂i,t+1−πi,t+1)2∑
(πi,t+1−πi,t)2

. Es-
timation using the Fama andMacBeth (1973) method is denoted FM. Estimation using the Friedman (2002)
method is denoted GBRT.When the data used as explanatory variables follows Fama and French (2006) it is
denoted FF06. When the data used as explanatory variables are all factors used in Fama and French (2006),
Frank and Goyal (2009), Frank and Yang (2019), and Gu et al. (2020) it is denoted All. Gross pro�t means
that pro�tability ismeasured as gross pro�t(t+1)

total assets(t+1) . Incomemeans that pro�tability ismeasured as
income(t+1)

total assets(t+1) .
Data construction details are provided in the appendix. Every cell in this table has 121,401 observations.

(1) (2) (3) (4)

Estimation Methods FM FM GBRT GBRT
Data FF06 All FF06 All
Pro�t Measure Gross pro�t Gross pro�t Gross pro�t Gross pro�t
Out-of-Sample {R2} 0.04 -1864.29 0.06 0.11

Estimation Methods FM FM GBRT GBRT
Data FF06 All FF06 All
Pro�t Measure Income Income Income Income
Out-of-Sample {R2} 0.09 -200.21 0.13 0.10
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Table C5: Pro�ts and �nancing �ow decomposition: Recursive Tuned Hyperparameters

This table reports the e�ect of pro�tability and expected pro�tability on debt and and equity issuance and
repurchasing. GBRT is used to forecast next period operating pro�t, πt+1, using prior information available
at time t including the variables from Fama and French (2006), Frank and Goyal (2009), Frank and Yang
(2019), and Gu et al. (2020) together. The hyperparameters are set in recursive evaluation tuningmethod. A
constant term, year �xed e�ect, �rm �xed e�ect, and �rm control variables are included (Frank and Goyal,
2009). Standard errors are clustered at the �rm level, and t-statistics are in parentheses. The dependent
variable is always based on information that was available prior to the start of the time period. *, **, and
*** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively. Every column in this table has
119, 955 observations.

Debtt Equityt Assets Growth

Dep var Net Iss Gross Iss Repur Net Iss Gross Iss Repur ∆t,t+1AT

ATt

Pro�tt 0.05*** -0.03*** -0.09*** -0.26*** -0.26*** 0.00 -0.10**
(5.88) (-2.96) (-7.61) (-14.91) (-14.80) (0.30) (-1.97)

EtPro�tt+1 -0.01 0.04*** 0.06*** 0.10*** 0.13*** 0.03*** 0.50***
(-0.98) (3.28) (4.55) (4.37) (5.87) (9.68) (7.89)

Year FE Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.07 0.39 0.40 0.46 0.46 0.23 0.23
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Table C6: Pro�ts and �nancing �ow decomposition: Cross-Validated Hyperparameters

This table reports the e�ect of pro�tability and expected pro�tability on debt and and equity issuance and
repurchasing. GBRT is used to forecast next period operating pro�t, πt+1, using prior information available
at time t including the variables from Fama and French (2006), Frank and Goyal (2009), Frank and Yang
(2019), and Gu et al. (2020) together. The hyperparameters are set in cross-validation tuning method. A
constant term, year �xed e�ect, �rm �xed e�ect, and �rm control variables are included (Frank and Goyal,
2009). Standard errors are clustered at the �rm level, and t-statistics are in parentheses. The dependent
variable is always based on information that was available prior to the start of the time period. *, **, and
*** denote statistical signi�cance at the 10%, 5%, and 1% level, respectively. Every column in this table has
119, 955 observations.

Debtt Equityt Assets Growth

Dep var Net Iss Gross Iss Repur Net Iss Gross Iss Repur ∆t,t+1AT

ATt

Pro�tt 0.06*** -0.02* -0.09*** -0.24*** -0.24*** 0.00 -0.06
(7.76) (-1.85) (-8.98) (-13.67) (-13.49) (0.42) (-1.20)

EtPro�tt+1 -0.03*** 0.03* 0.07*** 0.06*** 0.09*** 0.03*** 0.44***
(-3.18) (1.90) (5.48) (2.78) (4.15) (8.96) (6.70)

Year FE Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.07 0.39 0.40 0.46 0.46 0.23 0.23
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Table C7: Are prediction errors linearly predictable?

This follows Table 1 in Bordalo et al. (2021), regressing prediction error at t+1 on the information at time t.
Prediction mistake at t+ 1 is Prediction Errort+1 := pt+1 − Ftpt+1, where Ft is the model prediction based
on date t data. Panel A uses GBRT and All variables with recursive tuning as the prediction model. Panel B
uses GBRT and All variables with cross-validation tuning. Four di�erent information available at time t are
used. Prediction Errort := pt − Ft−1pt is prediction error at time t. Pro�tt = operating pro�t(t)

total assets(t) is pro�tability
at time t. Investmentt = capital expenditure(t)

total assets(t) is investment rate at time t. Debt issuancet is net debt issuance
at time t. Column (1) has fewer observations due to unavailable forecasts when �rm enters the sample at
time t.

(1) (2) (3) (4) (5)
Panel A Prediction errort+1

Prediction Errort -0.31***
(-28.60)

Et Pro�tt+1 -0.12***
(-12.77)

Pro�tt -0.18***
(-21.04)

Investmentt -0.03***
(-3.63)

Debt issuancet 0.04***
(5.95)

Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Method GBRT, All GBRT, All GBRT, All GBRT, All GBRT, All

Recursive Recursive Recursive Recursive Recursive
Observations 119955 106290 119955 119955 119955
Adjusted R2 0.16 0.12 0.14 0.11 0.11

Panel B Prediction errort+1

Prediction Errort -0.32***
(-29.42)

Et Pro�tt+1 -0.13***
(-14.22)

Pro�tt -0.20***
(-23.23)

Investmentt -0.02***
(-2.95)

Debt issuancet 0.05***
(6.59)

Year FE Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Method GBRT, All CV GBRT, All CV GBRT, All CV GBRT, All CV GBRT, All CV
Observations 119955 106290 119955 119955 119955
Adjusted R2 0.16 0.11 0.14 0.10 0.10
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Table C8: Excess returns and α sorted on expected pro�tability

This table shows monthly value-weighted average excess returns to portfolios sorted on di�erent expected
pro�tability measure, and α from time series regressions of these portfolios’ return on the Fama French
3 factors for July 1976 to June 2016 sample period. Stocks from the July of calendar year t + 1 to the June
of calendar year t + 2 are sorted into quintiles according to pro�t πt or expected pro�t Etπt+1. πt is pro�t
in the �scal year ending in calendar year t. Etπt+1 is expected pro�t in the �scal year ending in calendar
year t+ 1 predicted using information available in the �scal year ending in calendar year t. In columns (2),
we sort based on pro�t now (πt). In columns (3), we sort based expected pro�t estimated using Fama and
MacBeth (1973) regressions and Fama and French (2006) predictors, In columns (4), we sort based expected
pro�t estimated using GBRT and all predictors. The expected pro�ts are estimated similarly as in Table
2. We report the value-weighted portfolio excess returns of the portfolio with the lowest expected pro�t
(Low) and the portfolio with the highest expected pro�t (High). The returns are in percentage points, so
for example 2, means the monthly return is 2%. We calculate the spread between the highest and lowest
expected pro�t portfolios (High - Low). For each port�lio, we also report the constant term (α) and the
t-statistics (in the bracket) from time series regressions of regressing the portfolio returns on the Fama
French 3 factors. Every portfolio has 480 monthly observations.

(1) (2) (3)

Portfolio Pro�tt EtPro�tt+1 EtPro�tt+1

excess return

Low 0.52 0.50 0.46
High 0.63 0.63 0.63
High - Low 0.10 0.13 0.16

α

Low -0.21 -0.25 -0.29
(-2.50) (-2.46) (-3.19)

High 0.18 0.18 0.18
(3.42) (3.60) (3.62)

High - Low 0.39 0.43 0.47
(3.42) (3.38) (3.96)

Method FM, FF06 GBRT, All
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Table C9: Pro�ts and the cross section of expected returns

This table presents the monthly value-weighted average realized returns and spreads of portfolios formed
on predicted returns. The predicted return are estimated monthly using Fama and MacBeth (1973) regres-
sions for July 1976 to June 2016 sample period.

ri,t+1,k = θ0 + θ1 ln bkmkti,t + θ2 lnmvi,t+1 + θ3Etπ
Lag
t+1 + θ1 lnEt∆t+1AT/ATt

ri,t+1,k is the return on stock i in the kth month of the 12 months from the July of calendar year t + 1 to
the June of calendar year t + 2. i also denotes stock i in all the independent variables. Book-to-market,
ln bkmkti,t, is the logarithm of the book value of equity at the end of the �scal year that ends in calendar
year t divided by the market value of equity at the end of calendar year t. Size, lnmvi,t+1, is the logarithm
of the market value of equity at the end of June of calendar year t+ 1. Expected pro�tability, Etπt+1, is the
expected value of pro�t in the �scal year ending in calendar year t+1. Pro�tability is operating pro�t scaled
by lagged total assets, πLagt+1 ≡

operating pro�t(t+1)
total assets(t) . Expected asset growth, Et∆t+1AT/ATt, is the expected

growthof total assets in the�scal year ending in calendar year t+1. In column (1) independent variables used
to predict return are size and book-to-market only, which is the benchmark portfolio. In columns (2)-(4),
we add expected investment and expected pro�tability. To be consistent, wemeasure expected investment
estimated using Fama andMacBeth (1973) regressions and Fama and French (2006) predictors. In columns
(2), we use pro�t now as expected pro�t measure (EtπLagt+1 ≡ πt). In columns (3), we measure expected
pro�t estimated using Fama and MacBeth (1973) regressions and Fama and French (2006) predictors, In
columns (4), we measure using GBRT and all predictors. The expected pro�ts are estimated similarly as in
Table 2. Predicted return from July of year t to June of year t+1, the �tted value from the Fama andMacBeth
(1973) regression equation, are the product of average regressions slopes and explanatory variables at the
end of June of year t. Stocks are sorted into quintiles according to their predicted return. Value-weighted
average return is calculated for each group. We report the average realized returns of the portfolio with the
lowest predicted return (Low) and the portfolio with the highest predicted return (High). The returns are
in percentage points, so for example 2, means the monthly return is 2%. We calculate the spread between
the highest and lowest predicted return portfolios (High - Low). We also compute the average di�erence
and t-test statistics (in the brackets) between the “High - Low" spread in each column and the benchmark
"High - Low" spread in column (1). *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% level,
respectively. Every portfolio has 480 monthly observations.

(1) (2) (3) (4)

Portfolio size+value Pro�tt EtPro�tt+1 EtPro�tt+1

Low 0.55 0.52 0.53 0.54
High 1.26 1.34 1.38 1.43
High - Low 0.70 0.82 0.85 0.90

Aver di� 0.12 0.15 0.19
t-statistic 1.68 2.19 3.12

Method FM,FF06 GBRT,All
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Table C10: Pro�ts and the cross section of expected returns

This table presents the monthly value-weighted average realized returns and spreads of portfolios formed
on predicted returns. The predicted return are estimated monthly using Fama and MacBeth (1973) regres-
sions for July 1976 to June 2016 sample period.

ri,t+1,k = θ0 + θ1 ln bkmkti,t + θ2 lnmvi,t+1 + θ3Etπt+1 + θ1 lnEt∆t+1AT/ATt

ri,t+1,k is the return on stock i in the kth month of the 12 months from the July of calendar year t + 1 to
the June of calendar year t + 2. i also denotes stock i in all the independent variables. Book-to-market,
ln bkmkti,t, is the logarithm of the book value of equity at the end of the �scal year that ends in calendar
year t divided by themarket value of equity at the end of calendar year t. Size, lnmvi,t+1, is the logarithm of
the market value of equity at the end of June of calendar year t+ 1. Pro�tt+1 = operating pro�t(t+1)

total assets(t+1) . Expected
pro�tability, Etπt+1, is the expected value of pro�t in the �scal year ending in calendar year t+1. Expected
asset growth,Et∆t+1AT/ATt, is the expected growthof total assets in the�scal year ending in calendar year
t+1. In column (1) independent variables used to predict return are size and book-to-market only, which is
the benchmark portfolio. In columns (2)-(4), we add expected investment and expected pro�tability. To
be consistent, wemeasure expected investment estimated using Fama andMacBeth (1973) regressions and
Fama and French (2006) predictors. In columns (2), we use pro�t now as expected pro�tmeasure (Etπt+1 ≡
πt). In columns (3), we measure expected pro�t estimated using Fama and MacBeth (1973) regressions
and Fama and French (2006) predictors, In columns (4), we measure using GBRT and all predictors. The
expected pro�ts are estimated similarly as in Table 2. Predicted return from July of year t to June of year
t+1, the �tted value from the Fama and MacBeth (1973) regression equation, are the product of average
regressions slopes and explanatory variables at the end of June of year t. Stocks are sorted into 25 portfolios
according to their predicted return. Value-weighted average return is calculated for each group. We report
the average realized returns of the portfolio with the lowest predicted return (Low) and the portfolio with
the highest predicted return (High). The returns are in percentage points, so for example 2, means the
monthly return is 2%. We calculate the spread between the highest and lowest predicted return portfolios
(High - Low). We also compute the average di�erence and t-test statistics (in the brackets) between the
“High - Low" spread in each column and the benchmark "High - Low" spread in column (1). *, **, and ***
denote statistical signi�cance at the 10%, 5%, and 1% level, respectively. Every portfolio has 480 monthly
observations.

(1) (2) (3) (4)

Portfolio size+value Pro�tt EtPro�tt+1 EtPro�tt+1

Low 0.50 0.36 0.43 0.33
High 1.08 1.45 1.52 1.52
High - Low 0.59 1.09 1.09 1.19

Aver di� 0.50 0.51 0.60
t-statistic 2.36 2.27 2.81

Method FM,FF06 GBRT,All
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Table C11: Pro�ts and the cross section of expected returns: Gross Pro�t

This table presents the monthly value-weighted average realized returns and spreads of portfolios formed
on predicted returns. The predicted return are estimated monthly using Fama and MacBeth (1973) regres-
sions for July 1976 to June 2016 sample period.

ri,t+1,k = θ0 + θ1 ln bkmkti,t + θ2 lnmvi,t+1 + θ3Etπt+1 + θ1 lnEt∆t+1AT/ATt

ri,t+1,k is the return on stock i in the kth month of the 12 months from the July of calendar year t + 1 to
the June of calendar year t + 2. i also denotes stock i in all the independent variables. Book-to-market,
ln bkmkti,t, is the logarithm of the book value of equity at the end of the �scal year that ends in calendar
year t divided by the market value of equity at the end of calendar year t. Size, lnmvi,t+1, is the logarithm
of the market value of equity at the end of June of calendar year t+ 1. Expected pro�tability, Etπt+1, is the
expected value of pro�t in the �scal year ending in calendar year t+1. Pro�tt+1 = gross pro�t(t+1)

total assets(t+1) . Expected
asset growth,Et∆t+1AT/ATt, is the expected growthof total assets in the�scal year ending in calendar year
t+1. In column (1) independent variables used to predict return are size and book-to-market only, which is
the benchmark portfolio. In columns (2)-(4), we add expected investment and expected pro�tability. To
be consistent, wemeasure expected investment estimated using Fama andMacBeth (1973) regressions and
Fama and French (2006) predictors. In columns (2), we use pro�t now as expected pro�tmeasure (Etπt+1 ≡
πt). In columns (3), we measure expected pro�t estimated using Fama and MacBeth (1973) regressions
and Fama and French (2006) predictors, In columns (4), we measure using GBRT and all predictors. The
expected pro�ts are estimated similarly as in Table 2. Predicted return from July of year t to June of year
t+1, the �tted value from the Fama and MacBeth (1973) regression equation, are the product of average
regressions slopes and explanatory variables at the end of June of year t. Stocks are sorted into 25 portfolios
according to their predicted return. Value-weighted average return is calculated for each group. We report
the average realized returns of the portfolio with the lowest predicted return (Low) and the portfolio with
the highest predicted return (High). The returns are in percentage points, so for example 2, means the
monthly return is 2%. We calculate the spread between the highest and lowest predicted return portfolios
(High - Low). We also compute the average di�erence and t-test statistics (in the brackets) between the
“High - Low" spread in each column and the benchmark "High - Low" spread in column (1). *, **, and ***
denote statistical signi�cance at the 10%, 5%, and 1% level, respectively. Every portfolio has 480 monthly
observations.

(1) (2) (3) (4)

Portfolio size+value Pro�tt EtPro�tt+1 EtPro�tt+1

Low 0.50 0.44 0.45 0.45
High 1.08 1.36 1.36 1.34
High - Low 0.59 0.92 0.91 0.89

Aver di� 0.33 0.33 0.31
t-statistic 1.48 1.44 1.33

Method FM,FF06 GBRT,All
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Table C12: Pro�ts and the cross section of expected returns: Income

This table presents the monthly value-weighted average realized returns and spreads of portfolios formed
on predicted returns. The predicted return are estimated monthly using Fama and MacBeth (1973) regres-
sions for July 1976 to June 2016 sample period.

ri,t+1,k = θ0 + θ1 ln bkmkti,t + θ2 lnmvi,t+1 + θ3Etπt+1 + θ1 lnEt∆t+1AT/ATt

ri,t+1,k is the return on stock i in the kth month of the 12 months from the July of calendar year t + 1 to
the June of calendar year t + 2. i also denotes stock i in all the independent variables. Book-to-market,
ln bkmkti,t, is the logarithm of the book value of equity at the end of the �scal year that ends in calendar
year t divided by the market value of equity at the end of calendar year t. Size, lnmvi,t+1, is the logarithm
of the market value of equity at the end of June of calendar year t+ 1. Expected pro�tability, Etπt+1, is the
expected value of pro�t in the �scal year ending in calendar year t+1. Pro�tt+1 = income(t+1)

total assets(t+1) . Expected
asset growth,Et∆t+1AT/ATt, is the expected growthof total assets in the�scal year ending in calendar year
t+1. In column (1) independent variables used to predict return are size and book-to-market only, which is
the benchmark portfolio. In columns (2)-(4), we add expected investment and expected pro�tability. To
be consistent, wemeasure expected investment estimated using Fama andMacBeth (1973) regressions and
Fama and French (2006) predictors. In columns (2), we use pro�t now as expected pro�tmeasure (Etπt+1 ≡
πt). In columns (3), we measure expected pro�t estimated using Fama and MacBeth (1973) regressions
and Fama and French (2006) predictors, In columns (4), we measure using GBRT and all predictors. The
expected pro�ts are estimated similarly as in Table 2. Predicted return from July of year t to June of year
t+1, the �tted value from the Fama and MacBeth (1973) regression equation, are the product of average
regressions slopes and explanatory variables at the end of June of year t. Stocks are sorted into 25 portfolios
according to their predicted return. Value-weighted average return is calculated for each group. We report
the average realized returns of the portfolio with the lowest predicted return (Low) and the portfolio with
the highest predicted return (High). The returns are in percentage points, so for example 2, means the
monthly return is 2%. We calculate the spread between the highest and lowest predicted return portfolios
(High - Low). We also compute the average di�erence and t-test statistics (in the brackets) between the
“High - Low" spread in each column and the benchmark "High - Low" spread in column (1). *, **, and ***
denote statistical signi�cance at the 10%, 5%, and 1% level, respectively. Every portfolio has 480 monthly
observations.

(1) (2) (3) (4)

Portfolio size+value Pro�tt EtPro�tt+1 EtPro�tt+1

Low 0.50 0.46 0.48 0.38
High 1.08 1.25 1.31 1.35
High - Low 0.59 0.79 0.83 0.96

Aver di� 0.20 0.25 0.38
t-statistic 1.09 1.20 1.62

Method FM,FF06 GBRT,All
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